首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

2.
The need for more agricultural or residential land has encouraged reclamation at the coastal areas of Korea since 1200 ad (approximately). The groundwaters of these reclaimed areas could be expected to reveal hydrogeochemical properties different from those of areas directly affected by seawater intrusion. The purpose of this study, therefore, was to examine the salinization of shallow groundwater in a coastal reclaimed area and to identify the effect of land reclamation on groundwater quality. Major cations and anions, iodide, total organic carbon, δD, δ 18O and δ 13C were measured to assist the hydrogeochemical analysis. Chloride, δD and δ 18O data clearly show that the Na–Cl type water results from mixing of groundwater with seawater. In particular, the δD and δ 18O of Ca+Mg–Cl+NO3 type groundwaters are close to the meteoric water line, but Na–Cl type waters enriched in chloride are 18O-enriched with respect to the meteoric water line. Meanwhile, carbon isotopic data and I/Cl ratios strongly suggest that there are various sources of salinity. The δ 13C values of Na–Cl type groundwaters are generally similar to those of Ca+Mg–Cl+NO3 type waters, which are depleted in 13C with respect to seawater. I/Cl ratios of Na–Cl type groundwater are 10–100 times higher than that of seawater. Because the reclamation has incorporated a large amount of organic matter, it provides optimum conditions for the occurrence of redox processes in the groundwater system. Therefore, the salinization of groundwater in the study area seems to be controlled not only by saltwater intrusion but also by other effects, such as those caused by residual salts and organic matter in the reclaimed sediments.  相似文献   

3.
Physico-chemical parameters, major ion chemistry and isotope composition of surface and groundwaters were determined in forested coastal catchments and adjacent coastal plains. Results showed obvious characterisation related to physical and hydrological setting, and highly variable spatial differences reflecting the complexities of these areas. All these coastal waters are dominated by Na–Cl and fall on a common dilution line; hydrochemical grouping is largely due to anionic differences (Cl, SO4 and HCO3), although Na and Mg ratios also vary. Six major hydrochemical facies were determined. For groundwaters, compositional differences are largely related to aquifer material and level of confinement; for coastal groundwaters important are tidal effects and proximity to the shoreline. Differentiation for surface waters is mainly by drainage morphology, flow regime plus proximity to the coast. Connectivity between water bodies is reflected by minor base flow to catchment streams, including with flood plain wetlands, but mostly occurs in low-lying zones where there is mixing of fresh and saline water within surface water and subterranean estuaries, or by seawater intrusion enhanced by overuse. Oxygen and hydrogen isotopic data for confined and semi-confined groundwaters along the coast indicates local recharge; fresh surface waters in the elevated catchments are shown to be sourced further inland plus have experienced evaporation.  相似文献   

4.
High arsenic (As) groundwater is widely distributed in northwestern Hetao Plain, an arid region with sluggish groundwater flow. Observed As concentration in groundwater from wells ranges from 76 to 1,093 μg/l. Most water samples have high total dissolved solids, with Cl and HCO3 as the dominant anions and Na as the dominant cation. The major hydrochemical types of most saline groundwaters are Na–Mg–Cl–HCO3 and Na–Mg–Cl. By contrast, fresh groundwaters generally belong to the Na–Mg–HCO3 type. High concentrations of arsenic in shallow aquifers are associated with strongly reducing conditions, as evidenced by high concentrations of dissolved organic carbon, ammonium, as well as dissolved sulfide and Fe, dominance of arsenite, relatively low concentrations of nitrate and sulfate, and occasionally high content of dissolved methane (CH4). High As groundwaters from different places at Hetao Plain experienced different redox processes. Fluoride is also present in high As groundwater, ranging between 0.40 and 3.36 mg/l. Although fluorosis poses an additional health problem in the region, it does not correlate well with As in spatial distribution. Geochemical analysis indicates that evapotranspiration is an important process controlling the enrichment of Na and Cl, as well as trace elements such as As, B, and Br in groundwater. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
To delineate spatial extent of seawater intrusion in a small experimental watershed in the coastal area of Byunsan, Korea, electrical resistivity surveys with some evaluation core drillings and chemical analysis of groundwaters were conducted. The vertical electrical sounding (VES) method was applied, which is useful to identify variations in electrical characteristics of layered aquifers. The drilling logs identified a three-layered subsurface including reclamation soil, weathered layer and relatively fresh sedimentary bedrock. The upper two layers are the main water-bearing units in this area. A total of 30 electrical sounding curves corresponded mostly to the H type and they were further divided into three classes: highly conductive, intermediate, and low conductive, according to the observed resistivity values of the most conductive weathered layer. In addition, groundwater samples from 15 shallow monitoring wells were analyzed and thus grouped into two types based on HCO3/Cl and Ca/Na molar ratios with TDS levels, which differentiated groundwaters affected by seawater intrusion from those not or less affected. According to relationships between the three classes of the sounding curves and groundwater chemistry, locations of the monitoring wells with low HCO3/Cl and Ca/Na ionic ratios coincided with the area showing the highly conductive type curve, while those with the high ratios corresponded to the area showing low conductive curve type. Both the low electrical resistivity and the low ionic ratios indicated effects of seawater intrusion. From this study, it was demonstrated that the VES would be useful to delineate seawater intrusion in coastal areas.  相似文献   

6.
Muzaffarnagar is an economically rich district situated in the most fertile plains of two great rivers Ganga and Yamuna in the Indo-gangetic plains, with agricultural land irrigated by both surface water as well as groundwater. An investigation has been carried out to understand the hydrochemistry of the groundwater and its suitability for irrigation uses. Groundwater in the study area is neutral to moderately alkaline in nature. Chemistry of groundwater suggests that alkaline earths (Ca + Mg) significantly exceed the alkalis (Na + K) and weak acids exceed the strong acids (Cl + SO4), suggesting the dominance of carbonate weathering followed by silicate weathering. Majority of the groundwater samples (62%) posses Ca–Mg–HCO3 type of hydrochemical species, followed by Ca–Na–Mg–HCO3, Na–Ca–Mg–HCO3, Ca–Mg–Na–HCO3–Cl and Na–Ca–HCO3–SO4 types. A positive high correlation (r 2 = 0.928) between Na and Cl suggests that the salinity of groundwater is due to intermixing of two or more groundwater bodies with different hydrochemical compositions. Barring a few locations, most of the groundwater samples are suitable for irrigation uses. Chemical fertilizers, sugar factories and anthropogenic activities are contributing to the sulphate and chloride concentrations in the groundwater of the study area. Overexploitation of aquifers induced multi componential mixing of groundwater with agricultural return flow waters is responsible for generating groundwater of various compositions in its lateral extent.  相似文献   

7.
Hydrochemical study had been carried out on the groundwater resources of Potharlanka Island, Krishna delta, India. Groundwater samples were collected and analyzed at 42 sites in December 2001 and October 2006. A comparative study of hydrochemical data indicates: groundwater is mildly alkaline with a pH of 7.0–8.2; electrical conductivity (EC) varies from 605 to 5,770 μS/cm in December 2001, and 652–5,310 μS/cm in October 2006. More than 62% of the groundwater samples in 2006 have TDS value <2,000 mg/l, which is within permissible limit of potable water, but 57% of the samples in 2001, are higher than the maximum permissible limit. Extremely low HCO3/Cl and variable high Mg/Ca (molar ratios) had been indicated the transformation of the fresh groundwater aquifer systems to saline in 2001. Groundwater of this Island is mainly classified as Na–Cl and mixed types. A high percentage of Na–Cl type of these waters indicates the possibility of seawater ingression/intrusion process during 2001 and comparatively mixed water type indicates the dilution activities of groundwater. Excessive withdrawal of groundwater has caused the increase of saline water intrusion. Improvement of groundwater quality in this Island due to artificial recharge structures made by NGRI under RGNDWM project and affects of the flood due to heavy rainfall of the months of September–October 2005 are discussed in this paper.  相似文献   

8.
The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.  相似文献   

9.
A comparison of the d-excess values of precipitation and of spring water, streams, groundwater wells and submarine groundwater discharge indicated that the precipitation that occurred during winter season was an important source of groundwater recharge. Due to the steep slope of the island, most of the short duration and high intensity precipitation is lost through direct surface runoff. The comparison indicated that snowmelt is an important resource of groundwater recharge on Rishiri Island. Future climate change will continue to diminish the snowpack, and therefore, reduce groundwater recharge. It may cause the decline of the groundwater level in the coastal area and possibly shift the saline–freshwater boundary on the island. Chloride data indicated that saltwater intrusion is beginning to occur on the western flank of the island. A Piper diagram shows that the water samples are characterized by the dominance of the Ca–HCO3 and Na–Cl type. Their chemistry probably results from sea salt spray and the dissolution of minerals. These results support the need for the effective management of groundwater resources.  相似文献   

10.
The groundwater quality detoriation due to various geochemical processes like saline water intrusion, evaporation and interaction of groundwater with brines is a serious problem in coastal environments. Understanding the geochemical evolution is important for sustainable development of water resources. A detailed investigation was carried out to evaluate the geochemical processes regulating groundwater quality in Cuddalore district of Tamilnadu, India. The area is entirely underlined by sedimentary formations, which include sandstone, clay, alluvium, and small patches of laterite soils of tertiary and quaternary age. Groundwater samples were collected from the study area and analyzed for major ions. The electrical conductivity (EC) value ranged from 962 to 11,824 μS/cm, with a mean of 2802 μS/cm. The hydrogeochemical evolution of groundwater in the study area starts from Mg-HCO3 type to Na-Cl type indicating the cation exchange reaction along with seawater intrusion. The Br/Cl ratio indicates the evaporation source for the ion. The Na/Cl ratios indicate groundwater is probably controlled by water-rock interaction, most likely by derived from the weathering of calcium-magnesium silicates. The plot of (Ca+Mg) versus HCO3 suggests ions derived from sediment weathering. The plot of Na+K over Cl reflects silicate weathering along with precipitation. Gibbs plot indicates the dominant control of rock weathering. Factor analysis indicates dominance of salt water intrusion, cation-exchange and anthropogenic phenomenon in the study.  相似文献   

11.
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process; and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted δ 18O and δ 2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large contamination by organic 14C corroborate the recent origin of the groundwaters in the study area.  相似文献   

12.
 This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl, Ca2+/Cl, Mg2+/Cl, and Br/Cl molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater. Received, May 1997 / Revised, May 1998, December 1998 / Accepted, February 1999  相似文献   

13.
The Samborombon Bay wetland is located on the west margin of the Rio de la Plata estuary, in the Province of Buenos Aires, Argentina. This paper analyses the geological, geomorphologic, soil and vegetation characteristics of the southernmost sector of this wetland and their influence on surface water and groundwater. The study area presents three hydrologic units: coastal dunes, sand sheets and coastal plain. Coastal dunes and sand sheets are recharge zones of high permeability with well-drained, non-saline soils, and a few surface water flows. Changes in the water table are related to rainfall. Groundwater in coastal dunes is Ca–Mg–HCO3 to Na–HCO3, and of low salinity (590 mg/l). Groundwater in sand sheets is mainly Na–HCO3 with a salinity of about 1,020 mg/l. The coastal plain exhibits medium to low permeability sediments, with submerged saline soils poorly drained. Groundwater is Na–Cl with a mean salinity of 16,502 mg/l. A surface hydrological network develops in the coastal plain. Surface water levels near the shoreline are affected by tidal fluctuations; far from the shoreline water accumulates because of poor drainage. Both sectors have Na–Cl water, but the former is more saline. Human intervention and sea level rise may affect the wetland severely.  相似文献   

14.
The chemical analysis of 59 water wells in Meshkinshar area, Ardabil province NW of IRAN has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. The dominated hydrochemical types are Na–SO4, Ca–HCO3, Na–HCO3 and Na–Cl in the whole area. Based on the total hardness, the groundwater is soft. According to electrical conductivity and sodium adsorption ratio, the most dominant classes are C1–S1, C2–S1 and C3–S1. The major ion concentrations are below the acceptable level for drinking water. The groundwater salinity hazard is medium to high but the Na hazard is low to medium and in regard of irrigation water the quality is low to medium. So the drainage system is necessary to avoid the increase of toxic salt concentrations.  相似文献   

15.
Dar es Salaam Quaternary coastal aquifer is a major source of water supply in Dar es Salaam City used for domestic, agricultural, and industrial uses. However, groundwater overdraft and contamination are the major problems affecting the aquifer system. This study aims to define the principal hydrogeochemical processes controlling groundwater quality in the coastal strip of Dar es Salaam and to investigate whether the threats of seawater intrusion and pollution are influencing groundwater quality. Major cations and anions analysed in 134 groundwater samples reveal that groundwater is mainly affected by four factors: dissolution of calcite and dolomite, weathering of silicate minerals, seawater intrusion due to aquifer overexploitation, and nitrate pollution mainly caused by the use of pit latrines and septic tanks. High enrichment of Na+ and Cl? near the coast gives an indication of seawater intrusion into the aquifer as also supported from the Na–Cl signature on the Piper diagram. The boreholes close to the coast have much higher Na/Cl molar ratios than the boreholes located further inland. The dissolution of calcite and dolomite in recharge areas results in Ca–HCO3 and Ca–Mg–HCO3 groundwater types. Further along flow paths, Ca2+ and Na+ ion exchange causes groundwater evolution to Na–HCO3 type. From the PHREEQC simulation model, it appears that groundwater is undersaturated to slightly oversaturated with respect to the calcite and dolomite minerals. The results of this study provide important information required for the protection of the aquifer system.  相似文献   

16.
The Kali-Hindon is a watershed in the most productive central Ganga plain of India. The whole area is a fertile track with sugarcane being the principal crop. Systematic sampling was carried out to assess the source of dissolved ions, impact of sugar factories and the quality of groundwater. Thirty-six samples were collected covering an area of 395 km2. The quality of groundwater is suitable for irrigational purposes but is rich in SO4 which is not best for human consumption. Graphical treatment of major ion chemistry helps identify six chemical types of groundwater. All possible species such as Na–Cl, K–Cl, Na–HCO3, Na–SO4, Ca–HCO3, Mg–HCO3, Ca–SO4 and Mg–SO4 are likely to occur in the groundwater system. The most conspicuous change in chemistry of groundwater is relative enrichment of SO4. The interpretation of data reveals that SO4 has not been acquired through water–rock interaction. The source of SO4 is anthropogenic. Sugar factories alone are responsible for this potential environmental hazard.  相似文献   

17.
Groundwater from the major aquifers in southeastern part of Ghana was sampled to determine the main controls on groundwater salinity in the area. This paper uses multivariate statistical methods, conventional graphical methods and stable isotope data to determine spatial relationships among groundwaters from the different hydrogeologic units in the area on the basis of salinity. Q-mode hierarchical cluster analysis (HCA) was used to spatially classify the samples, whilst R-mode factor analysis was used to reduce the dataset into two major principal components representing the sources of variation in the hydrochemistry. Analysis of the major chemical parameters suggests that the principal component responsible for salinity increment in the area is the weathering of minerals in the aquifers. This factor is especially more significant in the upland areas away from the coast. The second factor responsible for salinity in the area is the combined effects of seawater intrusion, and anthropogenic activities. This study finds that four major spatial groundwater groups exist in the area: low salinity, acidic groundwaters which are mainly derived from the Birimian and Togo Series aquifers; low salinity, moderate to neutral pH groundwaters which are mainly from the Voltaian, Buem and Cape Coast granitoids; very high salinity waters which are not suitable for most domestic and irrigation purposes and are mainly from the Keta aquifers; and intermediate salinity groundwaters comprising groundwater from the Keta basin aquifers with minor contributions from the other major terrains. The major water type identified in this study is the Ca–Mg–HCO3 type, which degrades into predominantly Na–Cl–SO4 more saline groundwaters toward the coast. Stable isotope data analyses suggest that groundwater in the Voltaian aquifers is largely of recent meteoric origin. The Birimian and Togo aquifers receive a component of recharge from the tributaries of the Densu and Volta Rivers, after the waters have undergone evaporative enrichment of the heavier isotopes. In the Keta basin, recharge is mainly from precipitation but an observed enrichment of 2H and 18O isotopes is probably due to seawater and evaporative effects since the water table there is very shallow. An analysis of the irrigation quality of groundwater from the six aquifers in the study area using sodium adsorption ratio and electrical conductivity suggests that most of the aquifers supply groundwater of acceptable quality for irrigation. The only exception is the Keta Basin area, where extremely high salinities and SAR values render groundwater from this basin unsuitable for irrigation purposes.  相似文献   

18.
Groundwater samples were collected from 25 sampling sites of the Oropos–Kalamos basin aiming to describe the groundwater quality in relation to geology, lithology and anthropogenic activities of the study area. Chromium speciation analysis, factor analysis, GIS database and geochemical data proved successful tools for the identification of natural and anthropogenic factors controlling the geochemical data variability and for the identification of the redox couple controlling Cr speciation. A Durov diagram is used to classify groundwater quality into five types: Ca–HCO3, Mg–HCO3, Na–Cl, Mg–Cl and Ca–Cl. The groundwater quality of Oropos–Kalamos is influenced by various natural and anthropogenic factors. Evaluation of water quality for drinking and irrigation purposes is discussed.  相似文献   

19.
An attempt has been made to evaluate the water quality in the fast-growing coastal area of South Chennai. Groundwater samples were collected from selected locations and analyzed for major physico-chemical parameters. Experimental results show that the water has alkaline with pH varying from 7.2 to 8.2. Concentrations of Na and Cl were positively correlated with EC and elevated levels of these parameters near the coastal region, especially in the northern end of the study area, indicating the influence of seawater intrusion. Piper diagram identified Na–Cl as the dominant type of water in most of the samples. The presence of Ca–Cl facies in the groundwater suggests the possible ion exchange (Na with Ca) reaction in the aquifer. Molar ratios of Cl/HCO3 and Mg/Ca showed a higher value (>1) in many samples, which confirmed the influence of seawater intrusion on water quality. The Water Quality Index (WQI) of the study area ranged between 8 and 116, the highest recorded being at Thiruvanmiyur and the lowest at Muttukkadu. However, total hardness values show that 64% of the samples were hard or very hard in nature. The results of SAR, Na%, and PI show that majority of the samples are suitable for irrigation purposes. A comparison of spatial distribution maps of water quality parameters with those of WQI shows that groundwater quality has highly deteriorated in the Thiruvanmiyur region, located on the northeast part of the study area. Good-quality water is found at the southeast part of the study area, namely, Muttukkadu. This study indicates that urbanization and seawater intrusion have heavily affected the groundwater quality of South Chennai coastal area.  相似文献   

20.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号