首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new three-dimensional numerical model of coupled heat, moisture and air transfer in unsaturated soil is presented. In particular, the model accommodates moisture transfer in the form of liquid and vapour flow and heat transfer arising from conduction, convection and latent heat of vaporization. The bulk flow of dry air and the movement of air in a dissolved state are also included. The theoretical basis of the model, the finite element solution of the spatial terms and finite difference solution of the temporal terms are briefly presented. Attention is focused on the verification of the new numerical solution. This is achieved via comparisons with independent solutions of heat, moisture and air transfer in an unsaturated soil. The physical problem considered includes the highly non-linear hydraulic properties of sand. Thermal conductivity is also included as a function of soil moisture content. Excellent correlation of results is shown thus providing confidence in the new model. The new model is also applied to a number of test cases which illustrate the need for the development of a model which can fully include three-dimensional behaviour. In particular, three applications are presented each increasing in complexity. The first application illustrates three-dimensional heat transfer. This particular application is verified against existing commercial finite element software. Subsequent applications serve to illustrate how the coupled processes of heat moisture and air transfer combine to yield three-dimensional problems even within a simple geometric domain. Visualization of three-dimensional results is also addressed. © 1998 by John Wiley & Sons, Ltd.  相似文献   

2.
3.
周凤玺  高国耀 《岩土力学》2019,40(6):2050-2058
以多孔介质理论为基础,研究了稳态条件下非饱和土中温度?水分?盐分多场耦合问题。考虑非饱和土的孔隙被液态水、溶解的盐分、水蒸气和干燥气体等填充,在质量和能量守恒的基础上获得了非饱和土中水分、气体、盐分的质量守恒方程以及能量守恒方程。考虑一维稳态问题,选取温度、孔隙气压、孔隙水压和盐溶液浓度以及它们的导数作为状态变量,得到了问题的状态方程组。在给定的边界条件下,采用打靶法求解了该强耦合的非线性变系数微分方程组,通过与已有的试验结果相比较,验证了模型的有效性。基于数值算例,参数分析了含水率、温度边界、孔隙率等条件对非饱和土中温度场、水分场和盐分场分布的影响规律。  相似文献   

4.
This paper presents a model for the analysis of clay liner desiccation in a landfill barrier system due to temperature effects. The model incorporates consideration of fully coupled heat‐moisture‐air flow, a non‐linear constitutive relationship, the dependence of void ratio and volumetric water content on stress, capillary pressure and temperature, and the effect of mechanical deformation on all governing equations. Mass conservative numerical schemes are proposed to improve the accuracy of the finite element solution to the governing equations. The application of the model is then demonstrated by examining three test problems, including isothermal infiltration, heat conduction and non‐isothermal water and heat transport. Comparisons are made with results from literature, and good agreement is observed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
本文介绍了求解非饱和土壤中热量和水分耦合传输问题的一种数值方法——积分有限差分方法(IFDM)。基于菲利普-迪弗瑞斯(Philip-De Vries)多孔介质热湿耦合流动模型,采用积分有限差分方法,编制了求解热湿传输问题的计算程序 HM1,该程序可用于求解各类工程中遇到的多孔介质一维传热传湿问题。文中还给出了计算结果与实测结果相比较的实例。  相似文献   

6.
周嵩  陈益峰  张勤 《岩土力学》2014,35(4):1041-1048
膨润土缓冲材料热传导特性的研究,对于高放废物深地质处置系统的安全评价至关重要。基于串、并联原理,通过将土体孔隙划分为与固相基质并联和串联两部分,提出了考虑矿物成分、颗粒亲水性、孔隙率及饱和度等因素的非饱和膨润土有效热传导系数的4种预测形式,建立了基于4种形式线性组合的有效热传导特性预测模型。详细讨论了模型参数的确定方法,并讨论了孔隙率、饱和度和孔隙结构、颗粒亲水性等因素对土体有效热传导特性的影响。基于MX-80膨润土和高庙子膨润土热传导特性试验成果,对模型的预测性能进行了验证。结果表明,由于膨润土颗粒尺寸较小且具有亲水特性,孔隙内的空气与水宜采用并联描述。研究成果对于非饱和膨润土的导热性能以及工程屏障系统的THM耦合数值模拟研究具有一定的参考价值。  相似文献   

7.
Aquifer contamination by organic chemicals in subsurface flow through soils due to leaking underground storage tanks filled with organic fluids is an important groundwater pollution problem. The problem involves transport of a chemical pollutant through soils via flow of three immiscible fluid phases: namely air, water and an organic fluid. In this paper, assuming the air phase is under constant atmospheric pressure, the flow field is described by two coupled equations for the water and the organic fluid flow taking interphase mass transfer into account. The transport equations for the contaminant in all the three phases are derived and assuming partition equilibrium coefficients, a single convective – dispersive mass transport equation is obtained. A finite element formulation corresponding to the coupled differential equations governing flow and mass transport in the three fluid phase porous medium system with constant air phase pressure is presented. Relevant constitutive relationships for fluid conductivities and saturations as function of fluid pressures lead to non-linear material coefficients in the formulation. A general time-integration scheme and iteration by a modified Picard method to handle the non-linear properties are used to solve the resulting finite element equations. Laboratory tests were conducted on a soil column initially saturated with water and displaced by p-cymene (a benzene-derivative hydrocarbon) under constant pressure. The same experimental procedure is simulated by the finite element programme to observe the numerical model behaviour and compare the results with those obtained in the tests. The numerical data agreed well with the observed outflow data, and thus validating the formulation. A hypothetical field case involving leakage of organic fluid in a buried underground storage tank and the subsequent transport of an organic compound (benzene) is analysed and the nature of the plume spread is discussed.  相似文献   

8.
Although numerous numerical models have been proposed for simulating the coupled hydromechanical behaviors in unsaturated soils, few studies satisfactorily reproduced the soil–water–air three‐phase coupling processes. Particularly, the impacts of deformation dependence of water retention curve, bonding stress, and gas flow on the coupled processes were less examined within a coupled soil–water–air model. Based on our newly developed constitutive models (Hu et al., 2013, 2014, 2015) in which the soil–water–air couplings have been appropriately captured, this study develops a computer code named F2Mus3D to investigate the coupled processes with a focus on the above impacts. In the numerical implementation, the generalized‐α time integration scheme was adopted to solve the equations, and a return‐mapping implicit stress integration scheme was used to update the state variables. The numerical model was verified by two well‐designed laboratory tests and was applied for modeling the coupled elastoplastic deformation and two‐phase fluid flow processes in a homogenous soil slope induced by rainfall infiltration. The simulation results demonstrated that the numerical model well reproduces the initiation of a sheared zone at the toe of the slope and its propagation toward the crest as the rain infiltration proceeds, which manifests a typical mechanism for rainfall‐induced shallow landslides. The simulated plastic strain and deformation would be remarkably underestimated when the bonding stress and/or the deformation‐dependent nature of hydraulic properties are ignored in the coupled model. But on the contrary, the negligence of gas flow in the slope soil results in an overestimation of the rainfall‐induced deformation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Thermokarst lakes are a major heat source for the adjacent permafrost and a significant source of atmospheric methane. These lakes have important impacts on the physical, chemical, biological, geomorphological and hydrological processes occurring in the ground under and around thermokarst lakes, and seriously affect the local environment and the stability of the structures constructed in permafrost regions. Numerical simulation methods provide an effective method for quantitative analysis of the long-term impact of thermokarst lakes and their evolution on permafrost surrounding the lakes, and have deepened our knowledge about the impact of thermokarst lakes immensely. Summarizing the research progresses in numerical simulation of long-term impact of thermokarst lakes on thermal regime of surrounding permafrost has an important guiding function to improve mathematical models and develop more effective models. In this study, the components, functions, advantages and defects of several typical mathematical models having developed over the past ten years or so were reviewed, such as the heat conduction model with phase change, thaw slumping model, the coupled lake-permafrost model, thaw lake expansion model combining thermal processes with mass wasting and thaw-driven subsidence, the coupled heat conduction and moisture migration model, and the moving mesh method based thermokarst lake dynamic evolution model. Several issues deserving to be paid further attention in the future researches were proposed, including creating more effective models, determining the more realistic initial condition, lucubrating thermal and physical parameters of the typical soils, consider the impact of lake water replenishment, quantitative analysis of the thermal effect of supra-permafrost water flow around the thermokarst lakes, creating the coupled governing equation of heat conduction with phase change and convective heat transfer, embed ding the effect of climate warming in the model, numerical investigation of the long-term influence of thermokarst lake drainage on the environment change in permafrost regions, analyzing the long-term joint impact of multiple lakes on adjacent permafrost, simulating the near-shore talik development process and feature beneath shallow water in expanding thermokarst lakes, and continuing to do the systemic and comprehensive field measurements.  相似文献   

10.
A theoretical model is presented to predict simultaneous transient coupled heat and moisture transfer in partly saturated soils. The formulation is in terms of volumetric moisture content, is two dimensional, includes gravitational flow and takes into account latent heat of vaporization effects. The numerical solution of the problem is accomplished by means of a finite element solution algorithm. Predictions from the numerical model are used to investigate the importance of gravitational flow, for the case of a soil stratum subjected to evaporation losses at the surface. The results achieved show good qualitative agreement with expected behaviour.  相似文献   

11.
This paper deals with numerical modelling of anisotropic damage induced by desaturation and resaturation processes in a brittle rock. This study is conducted in the framework of geological barrier safety analysis for deep disposal of nuclear waste. A non-linear poroelastic model coupled with anisotropic damage is proposed for constitutive modelling of unsaturated rock. A fully coupled FEM method is used for modelling of hydromechanical coupling problems. Instantaneous phase change without dissipation between water liquid phase and vapour is included. Parametric studies are performed to investigate influences of main factors involved in such processes. Rock damage induced by excavation, desaturation and resaturation is evaluated. Finally, we analyse the importance of taking into account the correlation between induced damage and rock permeability.  相似文献   

12.
冻土水热力耦合研究现状及进展   总被引:5,自引:4,他引:1  
开展冻土水热力三场耦合研究对解决寒区工程问题具有重要的理论指导意义。归纳了冻土水热力耦合的理论基础,认为目前的水分迁移驱动力假说仍然不能很好地解释水分迁移现象,分凝冰的形成机制及判据仍需进行深入的研究。分类和评价了常见的正冻土水热力耦合模型,发现流体动力学模型虽然能够很好地描述水热迁移现象,但未考虑非连续冰透镜体;而较复杂的刚冰模型虽然考虑了冻结缘内水热迁移耦合现象,但是参数众多;热力学模型从微观角度描述了冻土水热力并考虑孔隙吸力,但仍存在参数众多的问题。同时,对预融膜理论在冻土水热力耦合问题中的应用进行了分析和展望,认为可以借助预融膜理论对冻土水热力耦合中的能量、水分迁移驱动力以及迁移速率等进行描述。最后,基于冻土水热力三场耦合研究现状及存在的问题,提出了冻土水热力耦合研究的总体构想:研究与实际情况相符同时适用于稳态及非稳态的通用数学表达式,开展冻土物理学各个参数的动态变化研究,纳入非饱和土体在冻融过程中的水热力相互作用研究,实现水热力在真正意义上的耦合,同时,加强预融膜理论在大尺度、陆面过程以及水热边界等方面的应用研究。  相似文献   

13.
This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff during high precipitation at specific sites, particularly in near-stream areas.  相似文献   

14.
饶登宇  白冰  陈佩佩 《岩土力学》2018,39(12):4527-4536
在考虑相变的热能平衡方程和非饱和水分迁移质量控制方程的基础上,建立温度场-水分场的耦合模型,并采用一种无网格粒子算法(SPH)进行数值求解。其中,耦合方程中考虑了水流传热以及温度势对水流的直接驱动,在不考虑相变的情况下,该耦合模型可退化为常温下的水-热耦合模型,故可用于模拟冻融循环的相关问题。从求解热能平衡方程中的含冰量出发,实现解耦并对半无限单向冻结条件下介质内非稳态温度场和体积含水率分布场进行模拟,将耦合作用下的温度场与不耦合的解析解进行对比,反映出水分迁移对温度场存在较大影响。最后,求解了路基边坡在季节性周期温度边界下,温度场、水分场分布的演变规律,并评估了边坡阴阳面受热不均对水热两场分布的影响。计算结果基本能反映土冻结相变的实际物理过程,光滑粒子算法可以用于尝试解决冻土领域的其他相关问题。  相似文献   

15.
The development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soil is described. A step by step approach is adopted, taking as a starting point a potential-based model of coupled heat and moisture transfer. Extensions of this work to include the effect of air transfer and the deformation characteristics of the soil are presented. Constitutive relationships which accommodate non-linear elasticity, thermoelasticity and elasto-plasticity are considered. Numerical solutions of the various versions of the model are presented. Validation of the versions of the model, at their differing stages of development, is considered in turn and results presented in support of each case. The need for further, on-going research is also suggested, with a view towards resolving remaining problems of concern in safety assessment.  相似文献   

16.
The paper presents the application of a Galerkin finite-element technique for the numerical solution of the differential equations governing coupled heat flow and moisture movement in a clay buffer. Attention is focussed on the axisymmetric modelling of the hygro-thermal processes encountered in the single borehole emplacement configuration developed for laboratory simulation. The numerical results derived for the time-dependent temperature distributions within the granite block and the residual moisture distribution within the buffer are compared with the respective experimental results.  相似文献   

17.
热环境控制是城市地下空间安全运行的有力保障,科学预测地下围岩的导热性能是地下空间环控系统热负荷评估的基础。软土是地下空间开发中一类常见土体,现有模型主要适合于预测中低含水率范围内土体导热系数的变化,而对于高含水率软土,合适的导热系数预测模型较少。基于细观模拟,本文提出了一种能有效预测软土导热系数的数值模型。该模型除了能够反映含水率、干密度等常规因素影响外,还可考虑矿物组成以及粒径分布等的影响。最后,通过与苏通GIL管廊工程中20个软土样的实测导热系数进行对比以验证数值模型的可靠性。首先借助激光粒度分析仪和X射线衍射分析测试了矿物组成和粒度分布,代入模型进行数字建模并通过细观导热模拟得到导热系数预测值。导热系数模拟预测值与实测值对比结果显示:模拟预测值基本在实测值±20%范围内,验证了本文模型的可靠性,表明了该模型在预测高含水率软土导热系数方面的潜力。此外,该模型还可以直观地展示土内各处局部热流的分布特征,这为深入认识土体导热行为的机理奠定了基础。本文研究可为软土以及土体导热系数的预测评价提供新的思路和方法。  相似文献   

18.
南水北调大面积农业灌溉的区域气候效应研究   总被引:1,自引:1,他引:0       下载免费PDF全文
基于社会经济学模型对中国未来不同社会经济发展情景下土地利用变化的预测资料,利用区域气候模式RegCM3,重点研究了南水北调工程建成后,对中国北方13个省(区)范围内农田、农林混作区和草地等进行大面积灌溉所产生的区域气候效应。结果显示:大面积农业灌溉对中国区域气候影响明显,主要受灌区及其邻近地区土壤湿度、近地层空气湿度、总云量、潜热通量、降水量等均呈增加趋势,地表温度、感热通量及500 hPa位势高度将降低。灌溉后受灌区土壤湿度的增加,不仅使受灌区气候环境发生变化,还通过动量、热量及水汽交换对邻近地区气候产生影响。  相似文献   

19.
An investigation was conducted to develop a comprehensive moisture model for predicting non-isothermal moisture conditions in soils. An extensive literature review indicated that a model based on the Philip and de Vries equations for non-isothermal moisture movement and heat conduction would give the best results. By using numerical methods, the implicit finite difference approximations to the moisture movement and heat-transfer equations were programmed for computer solution of water content and temperature in the soil with time. Validation studies indicate that the moisture model can be used to predict accurately moisture conditions in the soil. The model was validated by using hydraulic data from laboratory studies conducted on soil columns compacted with AASHO A-3 and AASHO A-4 soil. The application of the moisture model to the study of non-isothermal moisture movement in the field is demonstrated. The influence of parameters such as water table depth, precipitation, and soil hydraulic properties on soil moisture content are shown by use of the moisture model. The model is shown to be applicable to a wide range of boundary conditions and that it predicts the moisture-temperature regime with time in soils utilizing climatic input data.  相似文献   

20.
This paper deals with the moisture exchanges occurring between soils and the surrounding atmosphere. Convective drying tests are performed on Awans silts at different drying temperatures and air relative humidities in order to reproduce the natural drying conditions. The experiments improve the understanding of the vapour transfers kinetics between the soil samples and the atmosphere. The experimental results are analysed assuming that the transfers take place in a boundary layer existing at the surface of the porous medium. The influence of the thermal conditions on the evaporation is also taken into account. In our model, coupled vapour and energy exchanges are controlled by mass and heat transfer coefficients characterizing the boundary layer. These coefficients are determined from the drying experiments. The modelling of the drying tests in non‐isothermal conditions is performed in order to validate the formulation of the vapour and heat exchanges. The numerical results present a good agreement with the kinetic of the materials desaturation determined during the tests. The analysis of the moisture transport mechanisms into the sample and at the boundary shows that at the beginning of the test, the drying is first achieved by the transport of moisture in its liquid form and its evaporation at the sample outer boundary in contact with the atmosphere. In a second step, vapour diffusion becomes predominant into the sample and it corresponds to the most important decrease of relative humidity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号