首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
精细的海底地形模型在海底板块构造运动、水下载体航行保障、海洋资源勘探等方面具有重要作用。回顾国内外海底地形探测技术和模型构建的发展,讨论当前全球海底地形精细建模的研究现状和面临的主要挑战,总结今后全球海底地形精细建模的发展趋势,认为基于卫星测高技术的海洋重力场反演仍是未来全球海底地形精细建模的主要技术手段,并且新体制测高卫星如双星跟飞测高和SWOT(surface water ocean topography)二维海面高测量任务将为进一步提升海洋重力场以及海底地形模型精度提供数据源,结合地形复杂度优化海底地形反演理论方法有望带来理论创新,探索人工智能技术用于海底地形精细建模值得关注。  相似文献   

2.
双星伴飞卫星测高模式及其轨道设计   总被引:1,自引:0,他引:1  
鲍李峰  许厚泽 《测绘学报》2014,43(7):661-667
为达到提高反演海洋重力场分辨率的要求,本文提出一种双星伴飞的测高卫星模式,并根据卫星轨道设计的基本要求,给出相应的卫星轨道设计方案。仿真分析表明,该方案可在卫星设计寿命内完成反演1′×1′空间分辨率海洋重力场的要求,且观测数据覆盖了全球大部分海洋区域。该模式可实现星下点海平面梯度的实时测量,提出了改进测高反演海洋重力场的精度的新思路。  相似文献   

3.
卫星测高反演重力场的常规做法是利用海面高差求解垂线偏差,进一步计算海洋重力异常和海洋大地水准面高等信息。显然,提高海面高差的测量精度可以直接提升海洋重力场的反演精度。本文给出了双星跟飞卫星测高原理,通过轨道设计使双星星下点跨轨间距(即分辨率)在1′左右,双星同时测量沿其轨道的海面高差及跨轨的星间海面高差,此时轨道径向误差表现为星间或单星历元间的相对轨道径向误差,而与大气传播和地球物理效应等有关的改正项,对于地面轨间距只有1′的双星近似相等,其在海面高差中几无体现,因此海面高差的精度相比于传统的单星测量将有显著提高。利用测高A/B双星的实际观测数据,初步验证了相对轨道径向误差和海面高差中的8项改正的差值误差。结果表明,对于定标阶段约25 km的星下点间距,干对流层、湿对流层、电离层、固体潮、极潮和逆大气压等改正项的差值误差均在5 mm量级;海潮改正差值、海况偏差差值中分别有约1 cm和2 cm的残留误差;对于业务轨道约2 km的星下点间距,相对轨道径向误差约为3 mm,除了海况偏差差值有约0.52 cm的残留误差,其他改正项的差值误差均小于0.05 cm,可完全忽略不计。  相似文献   

4.
全球卫星导航系统(GNSS)不仅具有导航定位、测速以及授时等功能,且因其反射信号能被接收,可用于海面风场、海面高度反演,由此开辟了一个新的研究领域GNSS反射(GNSS-R)技术,GNSS-R技术用于海洋遥感是一个新的研究领域;文中主要介绍了GNSS-R遥感技术和海面测高的研究进展,并从基于信噪比(SNR)数据测量法、基于 C/A码相位测量法、基于载波相位测量法及基于载波频率测量法等方面分析和总结了GNSS-R在海面高度测量的常用方法.   相似文献   

5.
GNSS海面反射信号的建模对全球导航卫星系统反射测量(Global Navigation Satellite System-Reflectometry,GNSS-R)遥感应用具有重要意义.针对海面GNSS反射信号建模问题,本文采用Z-V模型研究了GNSS反射信号的时延一维相关功率和时延-多普勒二维相关功率特征,分析了不同风速下一维相关功率的变化情况,讨论了时延间隔和多普勒间隔对时延-多普勒图(delayDoppler map,DDM)的影响.数值结果表明:海面GNSS反射信号的相关功率对海面风速具有敏感性,在DDM波形仿真中,应选择合适的时延与多普勒间隔参数.该模型可模拟不同海况下海面GNSS反射信号的相关功率,为GNSS-R反射信号模拟及海洋遥感应用提供理论模型支撑.  相似文献   

6.
管斌 《测绘学报》2020,49(7):934-934
正本文针对海洋测高卫星高度计的自主定标需求,兼顾新型双星串飞编队测高模式下高度计相对定标的研究需要,对卫星高度计定标理论与方法进行了研究。主要内容概括如下:(1)梳理了卫星高度计绝对定标的意义与研究现状,给出了常用绝对定标方法的实现原理,分析了各种方法的优缺点。(2)系统研究了海水温度、盐度对GPS浮标测量海  相似文献   

7.
晁定波 《测绘科学》2006,31(6):16-18,23
阐述了联全新一代卫星重力测量数据、卫星测高数据及全球陆地重力数据确定高精度180阶全球重力场模型、以全球重力场模型为框架参考场、利用我国地面重力数据、GPS水准资料、数值高程模型和地形密度信息确定高分辨率cm级区域大地水准面的思想。指出了一个重点发展方向:利用GRACE卫星每30天的重力位模型分析时变重力场,联系合卫星测高同时相平均海面以及水文、气候和海洋模型,分析我国黄河流域和海洋地区水储量分布和海流季节性变化,并解释与气候要素变化的相关性。  相似文献   

8.
根据自主海洋测高卫星发展需求,设计了双星串飞运行模式,该运行模式下2.3 a时间可满足全球海洋区域1'×1'分辨率的地面轨迹覆盖要求。首先,将测高卫星重力场反演分为不考虑轨道运行特点(思路1)和考虑串飞轨道运行特点(思路2)两种思路,利用逆Vening-Meinesz方法开展了正态分布下随机误差传播的仿真计算,获得了两种思路下对应的误差指标。以该误差指标为基础,分别计算了双星串飞模式下两种重力场反演思路对应的精度指标。其中,反演思路2充分利用了串飞模式双星东西方向地面观测值可以进行相对定轨的特点,并考虑到近距离条件下传播误差、地球物理改正误差的系统误差特性,因此反演思路2的垂线偏差精度较反演思路1有了一定的提高,其重力场反演也具有一定的优势。理论计算结果表明,利用思路1的反演方法,2.3 a时间可获得1'×1'重力异常精度为6~10 mGal,4.6 a时间可达到4.2~7.1 mGal;利用思路2的反演方法,2.3 a时间可获得1'×1'重力异常精度为3.9 mGal,4.6 a时间可达到2.8 mGal。  相似文献   

9.
星载GNSS-R干涉测高技术通过调制GNSS卫星信号的宽带混合码,可以实现高精度宽幅海面测高。为有效验证星载GNSS-R干涉测高性能,本文设计了基于岸基GNSS-R干涉测高结果,开展星载GNSS-R干涉测高精度等效评估的策略。评估结果表明,GNSS-R干涉测高与卫星导航系统信号体制及信号信噪比相关,星载GNSS-R干涉测高可实现分米级测高精度。本文的研究成果可为后续星载GNSS-R干涉测高工程实践提供技术参考和数据支持。  相似文献   

10.
GNSS-R海洋遥感方法研究   总被引:1,自引:2,他引:1  
对利用全球导航定位系统(GNSS)的海洋反射信号(GNSS-R)反演海面要素的方法进行了详细讨论。在归纳国外研究成果的基础上,系统地整理和阐述了利用GNSS-R反演海洋要素的理论模型、方法以及反演流程,特别对GNSS-R的信号特征以及功率波形进行了详细讨论和公式推导。  相似文献   

11.
卫星高度计定标现状   总被引:1,自引:0,他引:1  
定标是卫星高度计数据精度的重要保障,随着高度计卫星HY-2A的发射及后续卫星组网规划,中国将获取长时间序列的自主高度计观测资料,定标对数据精度和长期一致性的重要性日益凸显。总结了卫星高度计定标常用技术方法的国内外研究进展和现状,阐述了中国自主海上定标场的建设和应用情况,重点对青岛千里岩定标场的大地基准测量、地壳沉降监测及HY-2A等多颗卫星高度计的定标结果进行总结分析,并对规划建设中的珠海万山海上综合定标场和中国沿海定标场网做了介绍。此外利用GNSS水汽反演技术对星载微波辐射计观测的大气湿延迟开展了精度检核实验,得到了Jason-2卫星2010年—2016年微波辐射计大气湿延迟观测精度,证明了利用中国沿海GNSS连续运行站标定星载微波辐射计大气湿延迟的可行性,对于充分了解和认识卫星高度计定标的研究现状和发展趋势有一定的借鉴和指导意义。  相似文献   

12.
Altimetry with GNSS-R interferometry: first proof of concept experiment   总被引:1,自引:0,他引:1  
The Global Navigation Satellite System Reflectometry (GNSS-R) concept was conceived as a means to densify radar altimeter measurements of the sea surface. Until now, the GNSS-R concept relied on open access to GNSS transmitted codes. Recently, it has been proposed that the ranging capability of the technique for ocean altimetric applications can be improved by using all the signals transmitted in the bandwidth allocated to GNSS, which includes open access as well as encrypted signals. The main objective of this study is to provide experimental proof of this enhancement through a 2-day experiment on the Zeeland Bridge (The Netherlands). In the experiment, we used a custom built GNSS-R system, composed of high gain GPS antennas, calibration subsystem, and an FPGA-based signal processor which implemented the new concepts, an X-band radar altimeter and a local geodetic network. The results obtained indicate that the new approach produces a significant improvement in GNSS-R altimetric performance.  相似文献   

13.
We estimate seasonal global mean sea level changes using different data resources, including sea level anomalies from satellite radar altimetry, ocean temperature and salinity from the World Ocean Atlas 2001, time-variable gravity observations from the Gravity Recovery and Climate Experiment (GRACE) mission, and terrestrial water storage and atmospheric water vapor changes from the NASA global land data assimilation system and National Centers for Environmental Prediction reanalysis atmospheric model. The results from all estimates are consistent in amplitude and phase at the annual period, in some cases with remarkably good agreement. The results provide a good measure of average annual variation of water stored within atmospheric, land, and ocean reservoirs. We examine how varied treatments of degree-2 and degree-1 spherical harmonics from GRACE, laser ranging, and Earth rotation variations affect GRACE mean sea level change estimates. We also show that correcting the standard equilibrium ocean pole tide correction for mass conservation is needed when using satellite altimeter data in global mean sea level studies. These encouraging results indicate that is reasonable to consider estimating longer-term time series of water storage in these reservoirs, as a way of tracking climate change.  相似文献   

14.
Towards a 1 mGal accuracy and 1 min resolution altimetry gravity field   总被引:1,自引:0,他引:1  
Over the past three decades, radar altimetry has made a significant contribution to marine gravity field modeling. To improve the accuracy and resolution, we propose a new twin-satellite altimetry. Such a system has several advantages. Among others, it provides (i) twice the number of samples per time epoch, and (ii) information about the cross-track surface gradient with high accuracy because most of the environmental and tidal errors will be common to the simultaneous measurements and therefore cancel out when computing the cross-track gradient computation. We describe a rigorous procedure for the deduction of the sea surface gradient at each altimeter observation point (i.e., not only at the crossovers), from the twin-satellite altimetry system. The precision of the gradient will be slightly affected by orbit errors, instrument drift, and inaccuracies in the geophysical corrections to be applied. We also demonstrate that a 1 mGal accuracy and 1 min resolution marine altimetry gravity field can be obtained if certain conditions are met. To achieve the expected goal, we recommend an orbital configuration, phasing two satellites in 4-s time delay such that the Earth rotation creates a natural baseline between the two satellites, and a 18 kHz SAR altimeter.  相似文献   

15.
Satellite radar altimetry has been monitoring the earth’s oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original geodetic mission data suffer from degradation in quality and coverage close to the coast and in Polar Regions as well as the occasionally wrongly retracking of these, even in the open ocean. In order to improve the quality of these geodetic mission data and to derive a new improved global marine gravity field called DNSC08GRA, a new double retracking technique for analyzing the waveform data has been developed. Multiple retracking allows the system to retrack more data to increase the spatial coverage of the data. Subsequently, a second retracking run is used to enhance the SSH determination by using information from the first fitting to inform the second set of retrackers about smoothly varying sea state parameters. The development of the new global marine gravity field DNSC08GRA is described in this paper. Besides application of new retracking techniques the radar altimetry has been processed using EGM2008 as reference and augmented with ArcGP gravity data and laser altimetry from ICESat to close the Polar gap. DNSC08GRA is seen to perform significantly better than previous global marine gravity field like KMS02. The improvement in accuracy is better than 20% in general, but in coastal regions, the improvement is in many places of the order of 40–50% compared to older global marine gravity field KMS02.  相似文献   

16.
推导了一般情况下激光站为星载雷达高度计进行绝对定标的数学模型,并进行了仿真验证和误差分析,对高度计定标精度进行了定量评估。利用Corsica定标场区中Grasse激光站对Jason-2卫星定轨的实测数据进行了分析,取得了满意的结果。  相似文献   

17.
The European Space Agency’s Gravity field and steady-state ocean circulation explorer mission (GOCE) was launched on 17 March 2009. As the first of the Earth Explorer family of satellites within the Agency’s Living Planet Programme, it is aiming at a better understanding of the Earth system. The mission objective of GOCE is the determination of the Earth’s gravity field and geoid with high accuracy and maximum spatial resolution. The geoid, combined with the de facto mean ocean surface derived from twenty-odd years of satellite radar altimetry, yields the global dynamic ocean topography. It serves ocean circulation and ocean transport studies and sea level research. GOCE geoid heights allow the conversion of global positioning system (GPS) heights to high precision heights above sea level. Gravity anomalies and also gravity gradients from GOCE are used for gravity-to-density inversion and in particular for studies of the Earth’s lithosphere and upper mantle. GOCE is the first-ever satellite to carry a gravitational gradiometer, and in order to achieve its challenging mission objectives the satellite embarks a number of world-first technologies. In essence the spacecraft together with its sensors can be regarded as a spaceborne gravimeter. In this work, we describe the mission and the way it is operated and exploited in order to make available the best-possible measurements of the Earth gravity field. The main lessons learned from the first 19 months in orbit are also provided, in as far as they affect the quality of the science data products and therefore are of specific interest for GOCE data users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号