首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 130 毫秒
1.
根据自主海洋测高卫星发展需求,设计了双星串飞运行模式,该运行模式下2.3 a时间可满足全球海洋区域1'×1'分辨率的地面轨迹覆盖要求。首先,将测高卫星重力场反演分为不考虑轨道运行特点(思路1)和考虑串飞轨道运行特点(思路2)两种思路,利用逆Vening-Meinesz方法开展了正态分布下随机误差传播的仿真计算,获得了两种思路下对应的误差指标。以该误差指标为基础,分别计算了双星串飞模式下两种重力场反演思路对应的精度指标。其中,反演思路2充分利用了串飞模式双星东西方向地面观测值可以进行相对定轨的特点,并考虑到近距离条件下传播误差、地球物理改正误差的系统误差特性,因此反演思路2的垂线偏差精度较反演思路1有了一定的提高,其重力场反演也具有一定的优势。理论计算结果表明,利用思路1的反演方法,2.3 a时间可获得1'×1'重力异常精度为6~10 mGal,4.6 a时间可达到4.2~7.1 mGal;利用思路2的反演方法,2.3 a时间可获得1'×1'重力异常精度为3.9 mGal,4.6 a时间可达到2.8 mGal。  相似文献   

2.
本文研究了卫星测高误差对海洋重力场探测的影响,导出了卫星测高随机误差在海洋重力异常推估过程中的误差传播公式,实验分析了卫星测高随机误差在多种测量分辨率下对重力异常推估值影响的大小,可为我国未来的测高卫星系统论证设计提供技术参考。  相似文献   

3.
海洋卫星测高在全球和区域大地水准面建模、全球海洋重力场反演、海底地形探测、海平面变化监测、构造板块运动研究等大地测量领域至关重要。本文概述了海洋微波测高卫星的简要发展历程,重点梳理了卫星测高在全球海洋重力场和全球海底地形建模方面取得的丰硕成果,对比分析了主流的海洋重力场和海底地形模型;介绍了合成孔径雷达高度计、Ka频段雷达高度计、合成孔径雷达干涉仪3种先进微波测高技术,并分析了其各自的优缺点,表明它们将在未来若干年呈并驱发展趋势;较为系统地阐述了海洋卫星测高的另一新型技术,即GNSS反射信号测量技术的研究动态,给出了GNSS-R(GNSS reflectometry)类(试验)卫星的发展脉络和发展前景。卫星测高的发展趋势之一是多颗测高卫星的组网观测,本文概括了曾经提出的和拟议中的若干组网测高计划,扼要介绍了由我国提出并正在实施的双星跟飞测高模式;最后指出了卫星测高发展的几个主要关注点,包括双星跟飞测高和SWOT(surface water ocean topography)任务的2维海面高(差)测量、卫星测高反演海底地形与高级地形激光高度计观测数据及遥感卫星图像的结合、星载GNSS-R厘米级海面高的载波相位测量、人工智能技术在卫星测高中的潜在应用等。  相似文献   

4.
卫星测高反演重力场的常规做法是利用海面高差求解垂线偏差,进一步计算海洋重力异常和海洋大地水准面高等信息。显然,提高海面高差的测量精度可以直接提升海洋重力场的反演精度。本文给出了双星跟飞卫星测高原理,通过轨道设计使双星星下点跨轨间距(即分辨率)在1′左右,双星同时测量沿其轨道的海面高差及跨轨的星间海面高差,此时轨道径向误差表现为星间或单星历元间的相对轨道径向误差,而与大气传播和地球物理效应等有关的改正项,对于地面轨间距只有1′的双星近似相等,其在海面高差中几无体现,因此海面高差的精度相比于传统的单星测量将有显著提高。利用测高A/B双星的实际观测数据,初步验证了相对轨道径向误差和海面高差中的8项改正的差值误差。结果表明,对于定标阶段约25 km的星下点间距,干对流层、湿对流层、电离层、固体潮、极潮和逆大气压等改正项的差值误差均在5 mm量级;海潮改正差值、海况偏差差值中分别有约1 cm和2 cm的残留误差;对于业务轨道约2 km的星下点间距,相对轨道径向误差约为3 mm,除了海况偏差差值有约0.52 cm的残留误差,其他改正项的差值误差均小于0.05 cm,可完全忽略不计。  相似文献   

5.
海洋重力场特征参数在地球重力场逼近计算和海上测量优化设计中具有重要的应用价值。基于卫星测高重力在海域具有覆盖范围广且分布均匀的独特优势,提出了利用最新卫星测高重力数据集开展海洋重力场特征统计模型计算和分析的研究方案,给出了代表误差和协方差函数模型参数的计算公式,定义并研究了海洋广义布格重力异常的变化特征,提出了等精度和非等精度拟合经验协方差函数的计算模型。利用中国近海及西太平洋海区超过50万个5'×5'方块的1'×1'网格卫星测高重力异常数据,首次计算得到一组有代表性的中国周边海域重力场特征统计模型参数,较好地揭示了海洋重力场有别于陆地重力场的变化特征,利用海面船测重力数据对计算结果进行了可靠性检核,提出了相应的模型参数修正方案和使用建议。  相似文献   

6.
精细的海底地形模型在海底板块构造运动、水下载体航行保障、海洋资源勘探等方面具有重要作用。回顾国内外海底地形探测技术和模型构建的发展,讨论当前全球海底地形精细建模的研究现状和面临的主要挑战,总结今后全球海底地形精细建模的发展趋势,认为基于卫星测高技术的海洋重力场反演仍是未来全球海底地形精细建模的主要技术手段,并且新体制测高卫星如双星跟飞测高和SWOT(surface water ocean topography)二维海面高测量任务将为进一步提升海洋重力场以及海底地形模型精度提供数据源,结合地形复杂度优化海底地形反演理论方法有望带来理论创新,探索人工智能技术用于海底地形精细建模值得关注。  相似文献   

7.
为了探究海洋重力场反演的影响因素,首先回顾了海洋重力场反演的发展进程,通过比较3种主要海洋重力场方法的优缺点并进行区域实用性分析得出最优的方法。其次详细阐述SS系列和KMS-DNSC-DTU系列海洋重力场模型的发展历程。通过新旧模型参数对比分析表明:SS系列早期模型分辨率较高,目前两系列模型分辨率都达到1′×1′;KMS-DNSC-DTU系列模型精度更新较快,DTU17模型精度相比于V24.1模型精度更加接近1 mGal。同时,概述了相应重力场模型在不同区域进行测试的结果,对比分析并得到了影响模型精度的区域差异性因素。最后对卫星测高获取全球海洋重力场模型的前景进行了展望。  相似文献   

8.
本文从Legendre函数的定义和Legendre微分方程出发,详细研究了参考重力场模型在网格上平均扰动场元的性质,提出了在移去—恢复处理过程中利用扰动位模型计算平均扰动场元的严密算法。最后,本文将该方法应用于利用卫星测高资料确定海洋重力场,改善了海域重力场的精度。  相似文献   

9.
本文利用Topex/Poseidon卫星测高资料,从快速Hartley交换(FHT)基本概念入手,给出了Hotine公式在平面近似、球面近似、Molodenskii的 下,反演中国近海海洋重力的数学模型,另对FHT处理中所需的坐标转换以及边缘效应等问题进行了讨论。同时,为改善长波特性的重力场信息,引入了M阶次的OSU91A参考重力场对上述Molodenskii模型进行了改化。  相似文献   

10.
联合多种测高数据确定中国边缘海及全球海域的垂线偏差   总被引:1,自引:0,他引:1  
联合多种测高资料,基于EIGEN_CG01C重力场模型,采用沿轨迹加权最小二乘方法确定了中国边缘海和全球海域格网垂线偏差(IGG2006_DOV),中国海域整体精度优于1.2″,满足了反演高分辨率、高精度海洋重力场对测高垂线偏差的精度要求。在南海海域,基于测高垂线偏差解算的重力异常与船测重力进行了外部检核,精度达到7.75 mGal。  相似文献   

11.
Towards a 1 mGal accuracy and 1 min resolution altimetry gravity field   总被引:1,自引:0,他引:1  
Over the past three decades, radar altimetry has made a significant contribution to marine gravity field modeling. To improve the accuracy and resolution, we propose a new twin-satellite altimetry. Such a system has several advantages. Among others, it provides (i) twice the number of samples per time epoch, and (ii) information about the cross-track surface gradient with high accuracy because most of the environmental and tidal errors will be common to the simultaneous measurements and therefore cancel out when computing the cross-track gradient computation. We describe a rigorous procedure for the deduction of the sea surface gradient at each altimeter observation point (i.e., not only at the crossovers), from the twin-satellite altimetry system. The precision of the gradient will be slightly affected by orbit errors, instrument drift, and inaccuracies in the geophysical corrections to be applied. We also demonstrate that a 1 mGal accuracy and 1 min resolution marine altimetry gravity field can be obtained if certain conditions are met. To achieve the expected goal, we recommend an orbital configuration, phasing two satellites in 4-s time delay such that the Earth rotation creates a natural baseline between the two satellites, and a 18 kHz SAR altimeter.  相似文献   

12.
Summary Two methods are discussed for the processing of altimetry data. For the first method it is assumed that the altimetry data, may be analyzed independent of the orbit computation for the satellite that carries the altimeter. Because of the high accuracy of the altimetry data, which can only be fully utilized if it is also introduced into the orbit computations, the second method deals with a simultaneous processing of altimetry data, orbit tracking, and gravity anomalies for the continents. To represent the gravity field, the potential of a simple layer is chosen whose unknown density is assumed to be constant over surface elements into which the surface of the earth is divided. Depending on the accuracy and the amount of the altimetry data, the surface elements for the density values are chosen smaller or larger, so that a very flexible representation of the earth’s gravity field is obtained. Because of the amount and the resolution of the altimetry data a large number of density values have to be determined in a least squares adjustment. To facilitate the computations, buffer zones are introduced so that the large system of normal equations can be broken up into small independent subsystems. Shortened version of a paper presented to the 14 th International Congress of Surveyors in Washington, Sept. 1974.  相似文献   

13.
Satellite radar altimetry has been monitoring the earth’s oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original geodetic mission data suffer from degradation in quality and coverage close to the coast and in Polar Regions as well as the occasionally wrongly retracking of these, even in the open ocean. In order to improve the quality of these geodetic mission data and to derive a new improved global marine gravity field called DNSC08GRA, a new double retracking technique for analyzing the waveform data has been developed. Multiple retracking allows the system to retrack more data to increase the spatial coverage of the data. Subsequently, a second retracking run is used to enhance the SSH determination by using information from the first fitting to inform the second set of retrackers about smoothly varying sea state parameters. The development of the new global marine gravity field DNSC08GRA is described in this paper. Besides application of new retracking techniques the radar altimetry has been processed using EGM2008 as reference and augmented with ArcGP gravity data and laser altimetry from ICESat to close the Polar gap. DNSC08GRA is seen to perform significantly better than previous global marine gravity field like KMS02. The improvement in accuracy is better than 20% in general, but in coastal regions, the improvement is in many places of the order of 40–50% compared to older global marine gravity field KMS02.  相似文献   

14.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

15.
对绕月卫星的运动规律以动力学方程的形式进行了描述,并讨论了绕月卫星定轨中动力法和几何法的适用性以及通过定轨观测获取月球重力场模型的计算方式和优化算法’在归纳月球重力场确定的技术流程的基础上。针对月球背面绕月卫星摄动无法观测的困难,分析了目前所能采取的各种处理办法及其特征。结合我国即将发射的“嫦娥卫星”装备有激光测高计这一特点,提出将月球表面地形与月球重力场之间的强相关性作为约束来确定我国自主重力场模型的设想。  相似文献   

16.
利用世界上第一个采用高低卫_卫跟踪技术的CHAMP重力卫星计划导出的全新的高精度全球长波重力场模型EIGEN_1S结果 ,根据二维高斯滤波原理 ,基于相同空域尺度对卫星重力结果和由卫星测高解算的几种版本的海洋重力异常数据进行了长波部分的分析研究。结果表明 ,在中国海及其邻近海域卫星重力数据与卫星测高解算的海洋重力异常数据之间存在明显的偏差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号