首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The NASA Ames HIFOGS spectrometer observed comet C/1995 O1 (Hale-Bopp) at epochs including 96 Oct 7–14 UT (2.8 AU), 97 Feb 14–15 UT (1.2 AU), 97 Apr 11 UT (0.93 AU), and 97 Jun 22, 25 UT (1.7 AU). The HIFOGS 7.5–13.5 μm spectrophotometry (R = 360 - 180) of the silicate feature at 2.8 AU is identical in shape to the ISO SWS spectra of comet Hale-Bopp (Crovisier et al., 1997); the strong 11.2 μm peak in the structured silicate feature is identified as olivine. Upon close passage to the sun, the HIFOGS spectra at 1.2 AU and 0.93 AU reveals strong peaks at 9.3 μm and 10.0 μm. The post-perihelion 10 μm silicate feature at 1.7 AU is weaker but has nearly the same shape as the pre-perihelion spectra at 1.2 AU, reverting to its pre-perihelion shape: there is no change in the dust chemistry by close passage to the sun. The appearance of the strong peaks at 9.3 μm and 10.0 μm at rh ≲ 1.7 AU is attributed to the rise in the contribution of pryoxenes (clino-pyroxene and orthopyroxene crystals) to the shape of the feature, and leads to the hypothesis that the pyroxenes are significantly cooler than the olivines. The pyroxenes are radiating on the Wien side of the blackbody at 2.8 AU and transition to the Rayleigh-Jeans tail of the blackbody upon closer approach to the Sun. Composite fits to the observed 10 μm silicate features using IDPs and laboratory minerals shows that a good empirical fit to the spectra is obtained when the pryoxenes are about 150 K cooler than the olivines. The pyroxenes, because they are cooler and contribute signficantly at perihelion, are more abundant than the olivines. The perihelion temperature of the pyroxenes implies that the pyroxenes are more Mg-rich than the other minerals including the olivines, amorphous olivines, and amorphous pyroxenes. The PUMA-1 flyby measurements of comet P/Halley also indicated an overabundance of Mg-rich pryoxenes compared to olivines. Comet Hale-Bopp's pyroxenes are similar to pyroxere IDPs from the ’Spray‘ class, known for their D-richness and their unaltered morphologies: Hale-Bopp's Mg-rich pyroxenes may be pristine relic ISM grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Peschke  S. B.  Grün  E.  Böhnhardt  H.  Campins  H.  Osip  D. J.  Hanner  M. S.  Heinrichsen  I.  Knacke  R. F.  Leinert  Ch.  Lemke  D.  Stickel  M.  Lisse  C. M.  Sykes  M.  Zarnecki  J. 《Earth, Moon, and Planets》1997,78(1-3):299-304
Comet Hale-Bopp has been observed five times with ISOPHOT, the photometer on board the Infrared Space Observatory (ISO), four times before its perihelion passage at heliocentric distances of 4.92, 4.58, 2.93 and 2.81 AU, and at 3.91 AU postperihelion. Each time, multi-filter photometry covering the range between 3.6–175 μm with eight to ten filters was performed to sample the spectral energy distribution of the comet. These measurements were used to determine dust temperatures for the cometary coma. The evolution of the strength of the silicate feature can be followed in the data as well as the flux deficit at longer wavelengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We report spectroscopy of Comet C/1991 T1 (McNaught-Hartley) at 3-13 μm on January 31.62 and February 1.7 2001 UT (delta=1.29 AU, r=1.40 AU) using the broadband array spectrograph system on the IRTF. The spectrum showed a silicate emission feature extending about 20% above the continuum. Two emission features at 10.3 and 11.2 μm appeared above the silicate band, the latter seemingly indicative of crystalline olivine. The 10.3-μm feature is only a 1-2 sigma detection but if real could indicate the presence of hydrated silicates. The color temperature at 8-13 μm was 260±10 K, approximately 6% above the blackbody radiative equilibrium temperature of 235 K. The magnitude at [N] was 3.13±0.02. On the second night, the comet had brightened slightly ([N]=2.98±0.02) and the two prominent emission features were absent, although the silicate emission feature maintained its trapezoidal shape with shoulders at 9.5 and 11.2 μm.  相似文献   

4.
We describe 5 to 18 μm broadband images and R ∼ 100 spectra of comet Hale-Bopp taken with SpectroCam-10 on the 5 m Hale telescope during six runs between 1996 June and 1997 April. Our data show the gradual warming of dust grains as the comet approached perihelion. In June, the 10 μm silicate emission feature was already stronger than observed in any other comet, and it increased to about 3 times the continuum level near perihelion. Spectral structure attributed to a crystalline olivine grain component remained relatively constant, but other features associated with pyroxenes appeared to vary with heliocentric distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Galdemard  P.  Lagage  P. O.  Dubreuil  D.  Jouan  R.  Masse  P.  Pantin  E.  Bockelée-Morvan  D. 《Earth, Moon, and Planets》1997,78(1-3):271-277
Comet C/1995 O1 (Hale-Bopp) was observed with camiras, the Saclay mid-infrared camera, mounted on the Nordic Optical Telescope (Roque de los Muchachos, La Palma), from April 14th to April 25th, 1997. This observing run was part of the European campaign devoted to Hale-Bopp observations from the Canary Islands (PI R. West). camiras spectro-imaging capabilities, achieved with a Circular Variable Filter (of spectral resolution R ≈ 50), were used to obtain spectra of the comet in the N atmospheric window (8–13 μm) over a large field of view (52″ × 78″), at a spatial resolution of ∼1 arcsec. Data were also collected at shorter wavelengths (in the L and M bands). The silicate dust feature around 10 μm is clearly apparent in the data. The shape of the feature varies continuously according to the position in the field. A dust model developed at Saclay in the framework of β-Pictoris dust disk studies was used to interpret the observations. The presence of both olivine and pyroxene with a high degree of crystallinity is needed to account for the observations. A change in the size distribution of the grains allows to reproduce the spatial change of the silicate feature according to the position in the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Comets, such as C/1995 O1 (Hale-Bopp), are important to studies of the origins of the solar system because they are believed to be frozen reservoirs of the most primitive pre-solar dust grains and ices. Here, we report 1.2–18.5 μm infrared (IR) spectrophotometric and polarimetric observations of comet Hale-Bopp. Our measurements of the spectral energy distribution (SED) and IR polarization near perhelion passage suggest that emission from the coma was dominated by scattering and thermal emission from sub-micron sized dust grains. Hale-Bopp's surprising brightness may have been largely a result of the properties of its coma grains rather than the size of its nucleus. The thermal emission continuum from the grains had a superheat of S = Tcolor/TBB ≥ 1.7, the peak of the 10 μm silicate emission feature was 1.7 mags above the carbon grain continuum, and the albedo (reflectivity) of the grains was ≥ 0.4 at a scattering angles, θ ≥ 135° This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Lisse  C. M.  Dennerl  K.  Englhauser  J.  Trümper  J.  Marshall  F. E.  Petre  R.  Valinia  A.  Kellett  B. J.  Bingham  R. 《Earth, Moon, and Planets》1997,77(3):283-291
The discovery of X-ray emission from comets has created a number of questions about the physical mechanism producing the radiation. There are now a variety of explanations for the emission, from thermal bremsstrahlung of electrons off neutrals or dust, to charge exchange induced emission from solar wind ions, to scattering of solar X-rays from attogram dust, to reconnection of solar magnetic field lines. In an effort to understand this new phenomenon, we observed but failed to detect in the X-ray the very dusty and active comet C/Hale-Bopp 1995 O1 over a two year period, September 1996 to December 1997, using the ROSAT HRI imaging photometer at 0.1–2.0 keV and the ASCA SIS imaging spectrometer at 0.5–10.0 keV. The results of our Hale-Bopp non-detections, when combined with spectroscopic imaging 0.08–1.0 keV observations of the comet by EUVE and BeppoSAX, show that the emission has the same spectral shape and strong variability seen in other comets. Comparison of the ROSAT photometry of the comet to our ROSAT database of 8 comets strongly suggests that the overall X-ray faintness of the comet was due to an emission mechanism coupled to gas, and not dust, in the comet’s coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We review the composition of Jupiter-family comet (JFC) dust as inferred from infrared spectroscopy. We find that JFCs have silicate emission features with fluxes roughly 20-25% over the dust continuum (emission strength 1.20-1.25), similar to the weakest silicate features in Oort Cloud (OC) comets. We discuss the grain properties that alter the silicate emission feature (composition, size, and structure/shape), and emphasize that thermal emission from the comet nucleus can have significant influence on the derived silicate emission strength. Recent evidence suggests that grain porosity is the is different between JFCs and OC comets, but more observations and models of silicates in JFCs are needed to determine if a consistent set of grain parameters can explain their weak silicate emission features. Models of 8 m telescope and Spitzer Space Telescope observations have shown that JFCs have crystalline silicates with abundances similar to or less than those found in OC comets, although the crystalline silicate mineralogy of comets 9P/Tempel and C/1995 O1 (Hale-Bopp) differ from each other in Mg and Fe content. The heterogeneity of comet nuclei can also be assessed with mid-infrared spectroscopy, and we review the evidence for heterogeneous dust properties in the nucleus of comet 9P/Tempel. Models of dust formation, mixing in the solar nebula, and comet formation must be able to explain the observed range of Mg and Fe content and the heterogeneity of comet 9P/Tempel, although more work is needed in order to understand to what extent do comets 9P/Tempel and Hale-Bopp represent comets as a whole.  相似文献   

10.
Leech  K.  Crovisier  J.  Bockelée-Morvan  D.  Brooke  T. Y.  Hanner  M. S.  Altieri  B.  Keller  H. U.  Lellouch  E.  Lim  T. 《Earth, Moon, and Planets》1997,78(1-3):81-83
Spectra of comet C/1995 O1 (Hale-Bopp) were obtained with the Infrared Space Observatory (ISO) at medium resolution with the grating spectrometer in the photometer (PHT-S) and/or at high resolution with the short wavelength spectrometer (SWS) and long wavelength spectrometer (LWS) in April 1996 (Crovisier et al., 1996), September–October 1996 (Crovisier et al., 1997a, b) and December 1997, at distances from the Sun of 4.6, 2.9 and 3.9 AU, respectively. For the first time, high-resolution spectra of a comet covering the entire 2.4 to 200 μm spectral range were obtained. The vibrational bands of H2O, CO2 and CO are detected in emission with PHT-S. Relative production rates of 100:22:70 are derived for H2O:CO2:CO at 3 AU pre-perihelion. H2O is observed at high spectral resolution in the ν3 group of bands around 2.7 μm and the ν2 group around 6 μm with SWS, and in several rotational lines in the 100–180 μm region with LWS. The high signal-to-noise ratio of the ν3 band observed on September–October 1996 allows accurate determinations of the water rotational temperature (28 K) and of its ortho-to-para ratio(2.45 ± 0.10, which significantly differs from the high temperature limit and corresponds to a spin temperature of 25 K). Longward of 6 μm the spectrum is dominated by dust thermal continuum emission, upon which broad emission features are superimposed. The wavelengths of the emission peaks correspond to those of Mg-rich crystalline olivine (forsterite). In the September–October 1996 spectra, emission features at 45 and 65 μm and possible absorption at 2.9–3.2 μm suggest that grains of water ice were present at 3 AU from the Sun. The observations made post-perihelion in late December 1997 led to the detections of H2O, CO2 and CO at 3.9 AU from the Sun (Figures 1 and 2). The production rates were ≈3.0 × 1028,3.5 × 1028 and ≈1.5 × 1029 s-1, respectively. This corresponds to H2O:CO2:CO = 100:110:500 and confirms that at such distances from the Sun, cometary activity is dominated by sublimation of CO and CO2 rather than by H2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present an analysis of the results of photometric investigations of two distant comets, C/2002 VQ94 (LINEAR) and 29P/Schwassmann-Wachmann-1, obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The comets under study demonstrate sufficient activity out of the zone of water ice sublimation (at heliocentric distances longer than 5 AU). In the spectra of the investigated comets, we found the CO+ and N2+ emission. The presence of this emission may say that the comets were formed in the outer parts of the Solar System, in a protoplanetary cloud at a temperature ≤25 K. We found that the photometric maximum of the ionosphere (in the CO+ filter) of the comet C/2002 VQ94 (LINEAR) is shifted relative to the photometric center of the dust coma by 1.4″ (7.44 × 103 km) in the direction deflected by 63° from the direction to the Sun. Using special filters to process the images, we picked out active structures (jets) in the dust coma of the 29P/Schwassmann-Wachmann-1 comet.  相似文献   

12.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

13.
We present 1-20 micrometers photometry of P/Giacobini-Zinner obtained at the NASA Infrared Telescope Facility, during 1985 June-September (r = 1.57-1.03 AU). A broad, weak 10 micrometers silicate emission feature was detected on August 26.6; a similar weak emission feature could have been hidden in the broadband photometry on other dates. The total scattering and emitting cross section of dust in the inner coma was similar to that in other short-period comets, but a factor of 10 (r = 1.56 AU) to 100 (r = 1.03 AU) lower than the amount of dust in Comet Halley. The thermal emission continuum can be fit with models weighted toward either small or large absorbing grains. The dust production rate near perihelion was approximately 10(5) g/s (small-grain model) to approximately 10(6) g/s (large-grain model). The corresponding dust/gas mass ratio on August 26 was approximately 0.1-1. A silicate-rich heterogeneous grain model with an excess of large particles is compatible with the observed spectrum of Giacobini-Zinner on August 26. Thus, weak or absent silicate emission does not necessarily imply an absence of silicates in the dust, although the abundance of silicate particles < or = 1 micrometer radius must have been lower than in Comet Halley.  相似文献   

14.
The comet Hale-Bopp (C/1995 O1) has been observed in the infrared (1–2.5 μm) with the Nordic Optical Telescope (NOT) equipped with the Arcetri NICMOS3 camera (ARNICA). Two observational campaigns, each one lasting about one week, were made when the comet heliocentric distance was about 3 AU. The first campaign was at the end of August and the second at the end of September 1996. During both runs two major outbursts were observed, the more intense of them started the day before the beginning of the second run. In the images recorded during the first three nights (24.8–26.8 Sept.) of the second run a dust shell expanding in the northern quadrant with a projected velocity of 0.14–0.28 km/s is clearly evident. The dust production rate increased by at least a factor ≈3 at the time of the outburst. Also evident on the first night is a change in the IR color that is well correlated with the dust shell. This is an indication that the material released by the outburst has a different composition and/or size distribution than that in the “quiescent” dust coma. In this paper we present preliminary results about the evolution and the photometric characteristics of the dust shell. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present 1- to 5-μm broadband and CVF images of comet Hale-Bopp taken 1997 February 10.5 UT, 50 days before perihelion. All the images exhibit a nonspherical coma with a bright “ridge” in the direction of the dust tail approximately 10″ from the coma. Synthetic aperture spectrophotometry implies that the optically important grains are of a radius ≤0.4 μm; smallest radius for any comet seen to date. The variation of the integrated surface brightness with radial distance from the coma (ρ) in all the images closely follows the “steady state” ρ−1 model for comet dust ablation (Gehrz and Ney, 1992). The near-infrared colors taken along the dust tail are not constant implying the dust grain properties vary with coma distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We present 10 and 20 μm spectra of comet Hale-Bopp taken at UKIRT on 1996 June 20 and 1996 September 29.The 10 μm spectra clearly show a strong silicate feature with peaks at 10.0 and 11.2 μm. The 20 μm spectrum on September 29 has strong excess flux relative to a blackbody and a peak near 19μm, in good agreement with the ISO SWS spectra obtained a week later. However, the 20 μm spectrum on June 20 has significantly lower flux than would be expected based on a blackbody extrapolation from the flux at 12.5 μm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Pittichovâ  J.  Sekenina  Z.  Birkle  K.  Boehnhardt  J.  Engels  D.  Keller  P. 《Earth, Moon, and Planets》1997,78(1-3):329-338
The Sekanina-Farrell particle fragmentation model for the striated tails of dust comets is successfully applied to two images of comet Hale-Bopp to study the motions of 12 striae in a time span of March 12–15, 1997. There is evidence for recurring outbursts with a periodicity of 11h21m, consistent with results based on analysis of dust jets. The ejecta in all the striae appear to have been released from one source on the nucleus between the end of January and the second half of February 1997, some 60 to 40 days before perihelion. The parent particles were subjected to a radiation pressure acceleration of βp ≃ 0.55 and their fragmentation lifetimes in 11 of the 12 striae were practically constant and equal to 13–15 days, when normalized to 1 AU from the Sun. Brief analysis of Watanabe et al.'s measurements of striae on their images from March 5–9, 1997 shows even shorter fragmentation lifetimes for the parent particles, mostly about 7–11 days at1 AU. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Bellucci  G. 《Earth, Moon, and Planets》1997,78(1-3):305-311
Previous analysis of imaging spectroscopy data in the 0.4–1 μm spectral range of comet Hale-Bopp, have shown the presence of two regions on the sunward and antisunward sides of the nucleus exhibiting different continuum emission (Bellucci, 1998, hereafter paper I). In this work we present the modeling of the continuum emission in terms of size distribution and composition of the dust grains. The spectra are fitted by micron sized olvine grains. A mechanism to explain the spatial gradient is also proposed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
SANTOS-SANZ  P.  SABALISCK  N.  KIDGER  M. R.  LICANDRO  J.  SERRA-RICART  M.  BELLOT RUBIO  L. R.  CASAS  R.  GOMEZ  A.  SANCHEZ PORTERO  J.  OSIP  D. 《Earth, Moon, and Planets》1997,78(1-3):235-241
We present a comparison between images of comet C/1995 O1 (Hale-Bopp) obtained from 12 March to 9 May 1997, with two telescopes of the Observatorio del Teide (IAC, Tenerife, Spain) in visible (Johnson-V filter) and three near-infrared narrowband filters (Brγ (2.166 μm), CO (2.295 μm), and Kcon (2.260 μm)). No significant differences are observed between the images in the three near-infrared bands suggesting that any CO emission is very weak, or produced by an extended flat source. We do not find evidence for the existence of an additional infrared component due to emission by warm dust, or to dust grains of diverse composition and/or size. Visible and infrared images of the same rotational phase look almost identical, supporting the view that the observed jets and shells are mainly dust structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
On March 31 and April 1, 1997, simultaneous photometry and polarimetry of comet Hale-Bopp's dust was conducted with the two-channel focal reducer of the Max-Planck-Institute for Aeronomy attached to the 2 m telescope of Pik Terskol Observatory (Northern Caucasus). Interference filters at642 nm and 443 nm selected red and blue narrow-band continuum windows. The observations have been averaged over the one hour of timethe comet could be observed. The polarization maps cover an area of about1 arcmin2 around the nucleus. The values of polarization degree measured close to the nucleus agree very well with observations obtained with aperture polarimetry. They are lower than in the surrounding coma by about 1%. In our field of view the polarization increases along the sun-comet line from the solar to the antisolar side by about 3%. The dust shells are visible in the polarization images. The polarization in the shells is higher by 1 to 2%and this increase is higher in the red than in the blue range. Therefore the ratio of red to blue polarization (≈ 1.2) increases in the shells by ≈ 0.03. In principle, the polarization excess in the shells, the ratio of red/blue polarization and the higher integrated polarization as compared to other comets can be explained by an excess of particles of radius of about 0.1 μm. Such particles, however, are subject to strong radiation pressure and will be pushed back into the tail before they reach the observed location of the shells. Real Rayleigh particles cannot explain the observed increase in the ratio of red/blue polarization. One therefore cannot exclude the possibility that the excess polarization in the shells is caused by fluffy aggregates via effects which are presently not well understood. The colour map shows features not well related to intensity and polarization, perhaps another dust shell of a different particle size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号