首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of groundwater resources in India is guided by National Water Policy (1987, 2002) which states that groundwater resources can be exploited only up to its recharge limit. The methodology for groundwater resources assessment in India is broadly based on Ground Water Resources Estimation Methodology, 1997 and it involves assessment of annual replenishable groundwater resources (recharge), annual groundwater draft (utilization) and the percentage of utilization with respect to recharge (stage of development). The assessment units (blocks/watersheds) are categorized based on stage of groundwater development (utilization) and the long term water level trend. The present methodology though useful in identification and prioritization of areas for groundwater management, falls short of addressing several critical issues like spatial and temporal variation of groundwater availability within the aquifer, accessibility of groundwater resources and quality of groundwater. This paper introduces a new categorisation scheme considering the above issues. The proposed scheme takes into account four criteria, viz. (i) stage of exploitation, (ii) extractability factor, (iii) temporal availability factor and (iv) quality factor. In comparison to the existing method used for categorisation, the proposed approach is more inclusive. The methodology is also equally suitable for both alluvial and hard rock terrain since it takes into consideration the variable characteristics of different types of aquifers and convergence of quantitative and qualitative assessment. The categorisation proposed here involves GIS based integration of different parameters/ themes. This allows better representation of spatial variability. The proposed methodology is demonstrated in this paper taking a case study from a hard rock terrain in central India.  相似文献   

2.
The future availability and sustainability of fresh groundwater resources in the South West district of the national capital territory (NCT) Delhi, India, have been projected. Due to a rapid decline in groundwater level and quality, the district has been required by the Government of India to regulate development of groundwater resources. Shallow groundwater is mostly saline and water resources in the area are limited. The methodology applied here involves microzonation of the district in terms of thickness of fresh groundwater and then quantification of present and future availability of freshwater in different freshwater zones, including tentative timescales. The calculation method has been aided by data on historic trends in water level at representative groundwater monitoring stations, located either in fresh groundwater zones or near to them. It is estimated that the presently available 481 million m3 of resources will be reduced to 374 million m3 by year 2007 and to 303 million m3 by the year 2012, and by the year 2022 the district will have only 176 million m3 of available fresh groundwater resources.  相似文献   

3.
4.
Despite its limited aerial extent, the National Capital Territory (NCT) Delhi, India, has diversified geological and topographical setup. A geochemical assessment of prevailing conditions of aquifer underlying the NCT was attempted and further classified into different hydrogeochemical zones on the basis of statistical and analyses and its correlation with land use, geological and climatic setting. Mineral phase study and isotopic analyses were used for the verification of performed clustering. Saturation indices (SI) calculated using the geochemical modelling code PHREEQC were used to distinguish the characteristics of four zones, as saturation states of the water does not change abruptly. Four different hydrogeochemical zones were statistically identified in the area: (1) intermediate (land-use-change-impacted) recharge zone, (2) discharge (agriculture-impacted) zone, (3) recharge (ridge) zone, and (4) recharge floodplain (untreated-discharge-impacted) zone. The distinctiveness of hydro-geochemical zones was further verified using stable isotopic (2H and 18O) signature of these waters. GIS-based flow regime in association with long-term geochemical evidences implied that these zones are being affected by different problems; thus, it necessitates separate environmental measures for their management and conservation. The study suggested that in a diversified urban setup where the complex interactions between anthropogenic activities and normal geochemical processes are functioning, hydrogeochmical zoning based on the integration of various techniques could be the first step towards sketching out the groundwater management plan.  相似文献   

5.
A major problem of the islanders is the availability of fresh water for drinking purpose. Groundwater is the only source of fresh water for the islanders. The demand for groundwater is increasing very year due to growing population and urbanization. A proper understanding of the groundwater condition is important in order to meet this increasing demand and to formulate future development and management strategies. It is in this context, principal hydrogeologic units; water table fluctuation pattern, general groundwater potential, existing groundwater withdrawal structures and draft, water quality, etc. have been studied in an elliptical shape Andrott Island of Union Territory of Lakshadweep, India, through field investigation and secondary data collection. Groundwater occurs under phreatic condition and seawater is in hydraulic continuity with the groundwater as evidenced by the tidal influence in almost all the wells. Groundwater level fluctuation due to seasonal variation varies from 0 to 0.542 m depending on the distance of the well from the coast. Depth to groundwater level varies from less than 1.234 to 3.520 m depending on the topography. Groundwater level fluctuation is due to the combination of factors like rainfall, tidal activities, sub-surface runoff, and draft. Large diameter dug wells are the main groundwater extraction structures in this island. There are 2,143 dug wells with almost each family having its own well and the density of the dug wells is about 437/km2. The stage of groundwater development is estimated as 37% and hence “Safe” for further groundwater development in this island. However, considering the very limited fresh-water resources and also the growing demand for groundwater, various management strategies such as rainwater harvesting, artificial recharge of groundwater, public participation in water conservation and wise use of groundwater, etc., have been suggested.  相似文献   

6.
Present study is an effort to distinguish between the contributions of natural weathering and anthropogenic inputs towards high salinity and nutrient concentrations in the groundwater of National Capital Territory (NCT) Delhi, India. Apart from the source identification, the aquifer of entire territory has been characterized and mapped on the basis of salinity in space and water suitability with its depth. Major element chemistry, conventional graphical plots and specific ionic ratio of Na+/Cl, SO4 2−/Cl, Mg2+/Ca2+ and Ca2+/(HCO3  + SO4 2−) are conjointly used to distinguish different salinization sources. Results suggest that leaching from the various unlined landfill sites and drains is the prime cause of NO3 contamination while study area is highly affected with inland salinity which is geogenic in origin. The seasonal water level fluctuation and rising water level increases nutrients concentration in groundwater. Mixing with old saline sub-surface groundwater and dissolution of surface salts in the salt affected soil areas were identified as the principle processes controlling groundwater salinity through comparison of ionic ratio. Only minor increase of salinity is the result of evaporation effect and pollution inflows. The entire territory has characterized into four groups as fresh, freshening, near freshening and saline with respect to salinity in groundwater. The salinity mapping suggests that in general, for drinking needs, groundwater in the fresh, freshening and near freshening zone is suitable up to a depth of 45, 20 and 12 m, respectively, while the saline zones are unsuitable for any domestic use. In the consideration of increasing demand of drinking water in the area; present study is vital and recommends further isotopic investigations and highlights the need of immediate management action for landfill sites and unlined drains.  相似文献   

7.
史中兴  费良军  薛才  赵新宇 《地下水》2019,(3):63-64,75
对于水资源短缺的西北地区,研究大型引黄灌区退水规律及退水量预测对灌区水资源高效利用和灌区水资源管理具有十分重要的意义。本文利用宁夏青铜峡灌区的实测资料,通过灰色关联分析法研究了宁夏引黄灌区年退水量的影响因素和预测模型,得出影响灌区退水量的主要因素依次为灌溉引水量、地下水位、降水量和蒸发量;建立了灌区退水量的多元逐步回归预测模型,并对青铜峡灌区退水量进行了预测研究,结果表明,该模型具有较高的预测精度,研究成果为灌区水资源高效利用奠定了科学基础。  相似文献   

8.
人工神经网络(ANN)模型在地下水资源预测中的应用研究   总被引:2,自引:0,他引:2  
孙涛  李纪人  潘世兵 《世界地质》2004,23(4):386-390
分析了地下水系统影响因素的复杂性,提出对于研究程度不能满足分布参数模型计算要求的研究区域,更适于从系统的观点出发、建立适宜的集中参数模型,从整体上分析研究,以解决相关问题。结合沈阳市地下水资源评价与管理实例,尝试应用人工神经网络(ANN)技术在水资源系统模型研究中的新模式。构建了基于BP算法的ANN降水量和蒸发量的预测、地下水水位动态模拟、预测及开采量优化方面的应用模型,结果表明模型精度满足要求。  相似文献   

9.
The South-to-North Water Diversion Project is a major national water conservancy project, but the effect of the water transfer depends on the utilization of water in the receiving areas. Water Diversion and Source Supplement Project is a specific utilization of the South-to-North Water Diversion Project in Zouping City. In order to analyze the effect of Water Diversion and Source Supplement Project on groundwater recharge in Daixi River Basin, the authors adopted the water balance method to calculate the groundwater recharge and total recharge of water diversion sources, based on the analysis of the groundwater recharge items in Daixi River Basin after carrying out this project. The total recharge is regarded as the amount of exploitable groundwater resources. The exploitable potential of groundwater resources in this area is evaluated by the comparison of the amount of exploitable groundwater resources and the actual amount of groundwater exploitation, and the effect of Water Diversion and Source Supplement Project on the over-exploitation of groundwater on the remission area was also demonstrated. Besides, the effective replenishment effect of this project on the groundwater in the study area was also revealed based on the annual groundwater and multi-year groundwater level dynamic monitoring data, which provides some reference for the rational development and utilization of groundwater resources in this region.  相似文献   

10.
南水北调是国家级的重大水利工程,调水效果最终依赖于接收调水地区对调水的具体利用,引水补源工程是南水北调工程在邹平市的具体利用。为评价引水补源工程对黛溪河流域地下水的补给效果,在分析邹平市引水补源工程实施后黛溪河流域地下水资源的各个补给项的基础上,采用水均衡法计算各个地下水补给量,确定了黛溪河流域引水补源的总补给量。将总补给量视为本区地下水可开采资源量,将地下水可开采资源量与本区用水所需的地下水开采量相比较,对本区地下水资源可开采潜力进行了评价,论证了引水补源工程可有效缓解区内地下水超采问题。另外,还充分利用年地下水动态和多年地下水位动态变化等监测资料,揭示了引水补源工程对区内地下水的有效补充作用,为区内合理开发利用地下水资源提供了依据。  相似文献   

11.
苏锡常地区孔隙Ⅱ承压水开采条件与水、土应力平衡探讨   总被引:1,自引:0,他引:1  
缪晓图 《江苏地质》2004,28(4):233-237
基于水、土应力平衡观点,获得了对Ⅱ承压水过量开采发生地面沉降和可开采资源的认识,但平衡条件尚有模糊性,认为承压水一开采就产生水、土应力失衡。其分析研究在含水层弹性释放量上,未分天然状态土体自重压缩和开采至水、土应力失衡互动时含水层压缩弹性释放量,这就导致水、土应力平衡条件认识上的模糊性。通过土体压缩曲线与地面沉降发生曲线变化特征,结合苏州市城市规划区东部郭巷Ⅱ承压水开采过程中水位与地面沉降同步监测资料研究,论述苏锡常地区Ⅱ承压水具高压强,有一个天然动态下水、土应力平衡面,Ⅱ承压水开采其顶板以上土体不同厚度区,按天然状态水、土应力平衡面以上水压力控制开采,不会发生地面沉降。这一问题的深化有助于地面沉降机理研究和承压水可开采资源评价及开采利用条件的认识,为超采区划定和沿江及高水位地区由封井转入按水、土应力平衡开采提供了理论依据。  相似文献   

12.
Recharge zones and sources in an urban setup (NCT of Delhi, India) were identified using environmental isotopes (2H, 3H, 18O); they were then correlated with hydrogeological conditions. The isotopic results showed that groundwater is being recharged by surface water during the dry season, while recharge associated with local precipitation becomes prominent during the monsoon. The effect of source-water evaporation and altitude on the isotopic characteristics of groundwater was clearly noted. A gradual increase in groundwater age, i.e. decrease in tritium content, while moving away from the river/canals/drains, suggests a degree of mixing of old-aged groundwater with relatively young recharging water. Further, to substantiate the findings of isotopic investigations, surface recharge conditions were differentiated into potential pervious (recharge prone) and impervious (recharge resistant) surfaces through mapping of potential recharge areas based on soil type and water-table depth, to depict a three-dimensional illustration of hydrogeologically mediated recharge zones of the area. The hydrogeological evidence thus obtained about the spatial distribution of permeable zones, slope and boundary conditions, aptly substantiates the isotopic findings. The study seeks its impact by correlation of the isotopic findings with the regional groundwater flow regime which has been altered by the urban development.  相似文献   

13.
长沟水源地是鲁能运河电厂供水水源地,通过预测水源地水位变化趋势,为电厂制定用水计划、及时调整开采布局提供依据。水位模拟预测是在五年长系列动态监测资料及地下水开采量调查基础上进行的,利用数值模型演练和预测了嘉祥单斜蓄水构造单元内在现状岩溶水开采状态下及增加20%开采量条件下的区域地下水流场变化特点,所模拟的曲线与实测曲线相吻合,所推算出的水文地质参数合理,为保证水源地合理、稳定、持续的开采提供了科学支持。  相似文献   

14.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

15.
雄安新区地下水资源概况、特征及可开采潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水资源在中国社会经济发展中发挥重要作用,特别是在地表水资源相对匮乏的北方地区。掌握一个地区地下水资源状况、动态变化特征及可开采潜力,对该地区的供水安全保障至关重要。本文选择雄安新区,在近年来开展的区域水文地质调查、监测及综合研究等成果基础上,结合前人研究,对雄安新区区域水文地质条件、地下水动态变化特征等进行分析总结;以恢复地下水降落漏斗为地下水可持续开采利用方案的目标,从白洋淀流域平原区尺度,设置现状开采条件、河流补水、工农业节水及地下水禁(限)采等不同情景方案,采用地下水数值模拟技术,综合分析不同情景30年后的预测结果,提出白洋淀流域平原区地下水可持续开采利用方案;在流域地下水可持续开采利用方案基础上,分析雄安新区地下水可开采的最大资源量,进而评价雄安新区地下水可开采潜力。结果显示,雄安新区区域水文地质条件相对简单,浅层富水性中等,深层富水性较强;地下水位为多年下降状态,近年来,浅、深层地下水整体呈企稳或回升状态,局部地区仍有所下降;地下水质量总体良好,且较为稳定。根据评价结果,雄安新区地下水可开采潜力约为1.80×10~8m~3/a,其中,浅层地下水可开采潜力约为1.50×10~8m~3/a,深层地下水可开采潜力约为0.30×10~8m~3/a。  相似文献   

16.
为服务生态文明建设和自然资源管理,促进山水林田湖草沙生命共同体健康协调,中国地质调查局组织开展以流域为单元的全国水文地质与水资源调查,重点部署了国家地下水监测工程运行维护、全国地下水位统测、全国地下水资源评价、重点地区水平衡研究、水文地质与水资源智慧服务系统建设、服务脱贫攻坚与乡村振兴等工作任务。2019年以来主要取得七方面进展,包括研究编制了基于生态优先理念涵盖大气水、地表水、地下水、海洋水的《地质调查支撑服务水资源管理总体设计》,引领了地质调查转型发展;高效运行国家地下水监测工程,数据对外实现全面共享服务,有力支撑了自然资源、水利、生态环境和科研等领域地下水管理与研究研究;建立了较完善的全国地下水位统测网络,统测点达5.6万个,准确掌握区域地下水流场年度变化;建立了全国地下水年度调查监测评价工作机制,实现地下水资源量、储存量及变化量年度出数;探索开展海河流域等重点地区水平衡研究,掌握了区域水平衡状况、人类活动影响下的水资源变化过程及其互馈机制;搭建全国水文地质与水资源智慧服务平台,初步建立多要素的全国水文地质与水资源数据库,研发了地下水资源在线评价系统;高质量完成扶贫找水任务,有力支撑服务了脱贫攻坚与乡村振兴。  相似文献   

17.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

18.
华北平原农田区地下水开采量对降水变化响应   总被引:15,自引:0,他引:15       下载免费PDF全文
通过区域农业开采量、区域平均年末浅层地下水位对区域年降水量变化的响应特征研究,结果表明:区域农业开采量与年降水量之间存在两极互逆效应,即在枯水年份,作物需耗水量和区域农业开采量增大;在丰水年份,作物需耗水量和区域农业开采量减小。上述规律,突现了在连续枯水年份地下水对农业安全保障的特殊作用。由此,提出了农业开采量的利用水平、合理性和节水潜力以及预测的新的评价方法。  相似文献   

19.
Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China   总被引:1,自引:0,他引:1  
Thermal groundwater occurs in bedrock aquifers consisting of the dolomite of the Wumishan Group of the Jixianin System and the Cambrian carbonate in the Xiaotangshan geothermal field near the northern margin of the North China Plain, China. The hot water in the geothermal field of basin-type discharges partly in the form of the Xiaotangshan hot spring under natural conditions. The hot water has TDS of less than 600 mg/L and is of Na·Ca-HCO3 type. The geothermal water receives recharge from precipitation in the mountain area with elevation of about 500 m above sea level to the north of the spring. Thermal groundwater flows slowly south and southeast through a deep circulation with a residence time of 224 years estimated with the Ra–Rn method. The Xiaotangshan hot spring dried up in the middle of the 1980s owing to the increasing withdrawal of the hot water in the geothermal field in the past decades. The water level of the geothermal system still falls continually at an annual average rate of about 2 m, although water temperature changes very little, indicating that the recharge of such a geothermal system of basin-type is limited. Over-exploitation has a dramatic impact on the geothermal system, and reduction in exploitation and reinjection are required for the sustainable usage of the hot water.  相似文献   

20.
杨宏伟  朱瑾 《新疆地质》2012,30(3):350-354
准噶尔盆地南缘平原区是新疆地下水开发利用程度较高的地区之一,水资源短缺是严重制约区内经济发展的主要因素.研究和分析区内地下水位变化趋势和特征及由于地下水开采引发的一系列环境地质问题,对盆地南缘地下水资源评价、地下水合理开发利用和地质环境保护具重要指导意义.从区内30年来地下水位时间和空间变化分析入手,阐述了盆地南缘因人类经济活动引起的水位持续下降和地下水开采量持续增加特征及地下水开采引发的环境地质问题,为今后区内地下水资源评价及开发利用提供较好依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号