首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Sedimentary Characteristics of the Cretaceous in the Songliao Basin   总被引:2,自引:0,他引:2  
The rupture of the lithosphere in Late Jurassic brought about the eruption of basaltic magma in the Songliao Basin. The evolution of the basin in Cretaceous progressed through six stages: pre-rift doming, extensional fracturing, fault subsidence, fault downwarping, downwarping and shringkage, resulting in the deposition of terrstrial facies nearly 10,000 m thick. There are different depositional sequences in these stages: the depositional period of the Early Cretaceous Shahezi and Yincheng Formations is the development stage of the down-faulted basin, forming a volcanic rock-alluvial fan-fan delta-lacustrine (intercalated with episodic turbidites)-swamp facies sequences; the period of the Early Cretaceous Dengluku Formation is the transformation stage of fault subsidence into fault downwarping of the basin, forming a sequence mainly of alluvial plain-lacustrine facies; the depositional period of the Early Cretaceous Quantou Formation-Late Cretaceous Nenjiang Formation is the downwarping stage of the basin, forming an alluvial plain-delta-lacustrine facies sequence; the period of the Late Cretaceous Sifangtai Formation-Mingshui Formation is the shringkage stage of the basin, forming again a sequence mainly of alluvial plain-alluvial fan and small relict lacustrine facies. These vertical depositional sequences fully display the sedimentary characteristics of a failed continental rift basin. Many facts indicate that the two large-scale lake invasions, synchronous with the global rise of sea level, which took place in the downwarping stage of the basin development, led to the connection between the lake and sea.  相似文献   

2.
Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study, and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type, which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin.  相似文献   

3.
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle–Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.  相似文献   

4.
The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleo- foreland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.  相似文献   

5.
The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic  相似文献   

6.
Mesozoic-Cenozoic Basin Features and Evolution of Southeast China   总被引:1,自引:0,他引:1  
The Late Triassic to Paleogene(T_3-E) basin occupies an area of 143100 km~2,being the sixth area of the whole of SE China;the total area of synchronous granitoid is about 127300 km~2;it provides a key for understanding the tectonic evolution of South China.From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China,combined with analysis of geometrical and petrological features,some new insights of basin tectonics are obtained.Advances include petrotectonic assemblages, basin classification of geodynamics,geometric features,relations of basin and range.According to basin-forming geodynamicai mechanisms,the Mesozoic-Cenozoic basin of SE China can be divided into three types,namely:1) para-foreland basin formed from Late Triassic to Early Jurassic(T_3-J_1) under compressional conditions;2) rift basins formed during the Middle Jurassic(J_2) under a strongly extensional setting;and 3) a faulted depression formed during Early Cretaceous to Paleogene (K_1-E) under back-arc extension action.From the rock assemblages of the basin,the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous(K_1) and a red -bed type formed from Late Cretaceous to Paleogene(K_2-E).Statistical data suggest that the area of all para-foreland basins(T_3-J_1) is 15120 km~2,one of rift basins(J_2) occupies 4640 km~2,and all faulted depressions equal to 124330 km~2 including the K_2-E red-bed basins of 37850 km~2.The Early Mesozoic (T_3-J_1) basin and granite were mostly co-generated under a post-collision compression background, while the basins from Middle Jurassic to Paleogene(J_2-E) were mainly constrained by regional extensional tectonics.Three geological and geographical zones were surveyed,namely:1)the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary;2)the Middle Jurassic rift zone;and 3)the Ganjiang separating zone of Late Mesozoic volcanism.Three types of basin-granite relationships have been identified,including compressional(a few),strike-slip(a few), and extensional(common).A three-stage geodynamical evolution of the SE-China basin is mooted:an Early Mesozoic basin-granite framework;a transitional Middle Jurassic tectonic regime; intracontinental extension and red-bed faulted depressions since the Late Cretaceous.  相似文献   

7.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

8.
On the basis of reprocessing 34 new two-dimensional spliced long sections(20,191 km) in the Tarim Basin, the deep structure features of the Tarim Basin were analyzed through interpreting 30,451 km of two-dimensional seismic data and compiling basic maps. Seismic interpretation and geological analysis conclude that the Nanhua-Sinian strata are a set of rift-depression depositional systems according to their tectonic and depositional features. The rift valley formed in the Nanhua Period, and the transformation became weaker during the late Sinian Period, which eventually turned into depression. From bottom to top, the deposited strata include mafic igneous, tillite, mudstone, and dolomite. Three major depocenters developed inside this basin during the rift stage and are distributed in the eastern Tarim Basin, the Awati area, and the southwestern Tarim Basin. Among them, the rift in the eastern Tarim Basin strikes in the near east-west direction on the plane and coincides with the aeromagnetic anomaly belt. This represents a strong magnetic zone formed by upwelling basic volcanic rock along high, steep normal faults of the Nanhua Period. Controlled by the tectonic background, two types of sedimentary systems were developed in the rift stage and depression stage, showing two types of sequence features in the Sinian depositional stage. The Nanhua System appears as a wedge-shaped formation, with its bottom in unconformable contact with the base. The rifting event has a strong influence on the current tectonic units in the Tarim Basin, and affects the distribution of source rock in the Yuertus Formation and reservoir beds in the Xiaoerbulake Formation in Lower Cambrian, as well as the gypseous cap rock in Middle Cambrian. The distribution features of the rifts have important and realistic significance for determining the direction of oil and gas exploration in the deep strata of the Tarim Basin. Comprehensive analysis suggests that the Tazhong region is the most favorable zone, and the Kalpin-Bachu region is the optimal potential zone for exploring sub-salt oil and gas in deep Cambrian strata.  相似文献   

9.
The Hala’alat Mountains are located at the transition between the West Junggar and the Junggar Basin.In this area,rocks are Carboniferous,with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles.Among these strata,seven unconformities are observed and distributed at the bases of:the Permian Jiamuhe Formation,the Permian Fengcheng Formation,the Triassic Baikouquan Formation,the Jurassic Badaowan Formation,the Jurassic Xishanyao Formation,the Cretaceous Tugulu Group and the Paleogene.On the basis of balanced sections,these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic.In conjunction with the currently understood tectonic background of the surrounding areas,the following conclusions are proposed:the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian;the unconformities at the bases of the Triassic Baikouquan and Jurassic Badaowan formations are closely related to the late Permian-Triassic Durbut sinistral slip fault;the unconformities at the bases of the middle Jurassic Xishanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic-early Cretaceous,and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift.All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.  相似文献   

10.
Until now, all Chinese palaeontinids have come from northern China and are more diverse than any other hemipterous insects in the Mesozoic. Most palaeontinids have been discovered from the area encompassing northern Hebei, the Ningcheng area of Inner Mongolia and western Liaoning. The difference in ubiquity of fossil records between northern and southern China is probably related to taphonomical and collecting bias. Records of Early and Late Jurassic palaeontinids are very scarce. The highest diversity of palaeontinid species occurs in the Middle Jurassic of Daohugou Lagersttte. Early Cretaceous palaeontinids of China are restricted to the typical distribution of Jehol Biota. Palaeontinodes sp. is described from the Lower Cretaceous Yixian Formation of Yangshuwanzi, Inner Mongolia and is the only Palaeontinodes specimen from the Cretaceous. Plachutella exculpta Zhang, 1997 from the Lower Jurassic Badaowan Formation of Karamai, Xinjiang is re-described and some previously reported species of this genus are discussed.  相似文献   

11.
合肥盆地中生界的地层时代判识及意义   总被引:3,自引:0,他引:3  
张交东 《地质学报》2009,83(5):599-608
合肥盆地由于构造演化过程复杂、古生物资料缺乏等,在地层时代研究上存在着诸多疑义;本文以地震层序为框架辅以生物地层学和岩石地层学等证据,参照区域构造事件,建立了新的地层层序,主要提出了:①周公山组和圆筒山组的岩石学、地球物理学和古生物学等特征相似,二者合并统称为圆筒山组,原先的周公山组和圆筒山组分别视为该地层组的上部岩性段和下部岩性段,时代为中侏罗统;②朱巷组与黑石渡组属于异地同期异相,为上侏罗统;③响导铺组为下白垩统;④定远组与戚家桥组属于异地同期异相,为古近系;这是探索以层序地层学方法为主判识地层时代的综合性研究成果,为低勘查程度地区的地层时代确定提供了一个实例,也为大别山造山带、郯—庐断裂带中生代构造演化研究提供了依据。  相似文献   

12.
合肥盆地中生代地层时代与源区的碎屑锆石证据   总被引:3,自引:0,他引:3  
王薇  朱光  张帅  刘程  顾承串 《地质论评》2017,63(4):955-977
合肥盆地位于大别造山带北侧、郯庐断裂带西侧,其发育过程与这两大构造带演化密切相关。本次工作对合肥盆地南部与东部出露的中生代砂岩与火山岩进行了锆石年代学研究,从而限定了各组地层的沉积时代,确定了火山岩喷发时间,指示了沉积物的源区。这些年代学数据表明,合肥盆地南部的中生代碎屑岩自下而上分别为下侏罗统防虎山组、中侏罗统圆筒山组或三尖铺组、下白垩统凤凰台组与周公山组(或黑石渡组)与上白垩统戚家桥组,其间缺失上侏罗统。盆地东部白垩系自下而上为下白垩统朱巷组与响导铺组和上白垩统张桥组。该盆地出露的毛坦厂组或白大畈组火山岩喷发时代皆为早白垩世(130~120 Ma)。盆地南部的下——中侏罗统及白垩系源区皆为大别造山带,分别对应该造山带的后造山隆升与造山后伸展隆升。而盆地东部白垩系的源区始终为东侧的张八岭隆起带,后者属于郯庐断裂带伸展活动中的上升盘。  相似文献   

13.
合肥盆地位于华北板块东南缘,形成于华南、华北板块碰撞过程中。合肥盆地形成时表现为大别造山带向北逆冲形成的前陆挠曲盆地,早白垩世在区域伸展背景下转变为断陷盆地。中侏罗统圆筒山组是合肥盆地前陆挠曲阶段的沉积地层之一,主要表现为湖泊相沉积,与下伏的防虎山组典型的河流相沉积明显不同。为了获得圆筒山组更详细的物源信息,对肥西地区出露的圆筒山组紫红色粉砂岩开展了碎屑锆石LA-ICP MS U-Pb定年。定年结果显示,两个粉砂岩样品均获得了约2.0 Ga和约770 Ma两个主要峰值以及约2.4 Ga次要峰值。该特征与扬子板块锆石年龄分布特征几乎完全一致,指示圆筒山组物源应来自扬子板块。考虑到盆地地层的物源不应来自其周边隆起区分水岭的另一侧,因而推测圆筒山组物源应来自张八岭隆起中侏罗世时地表出露岩石。在燕山运动A幕影响下,下扬子地区发生逆冲褶皱活动,张八岭隆起发生明显隆升,上部岩石被剥蚀殆尽,仅保留现今出露的新元古代张八岭群及肥东杂岩,被剥蚀的岩石搬运沉积于合肥盆地内,形成圆筒山组。  相似文献   

14.
合肥盆地中新生代三维埋藏史分析   总被引:2,自引:0,他引:2  
在合肥盆地地震资料的基础上,求得现今盆地内部中新生代各个地层的厚度分布。并通过回剥技术模拟盆地埋藏史,获得合肥盆地中生代以来三维演化历史。结果显示中生代以来,合肥盆地沉积地层最厚超过万米,中上侏罗统为主要沉积地层;三维埋藏史揭示合肥盆地的中新生代沉积演化历史受大别造山带和郯庐断裂带的共同控制,盆地沉积中心的迁移与大别造山带和郯庐断裂的活动密切相关。  相似文献   

15.
大别造山带北缘中生代地层格架厘定   总被引:25,自引:0,他引:25  
大别山北麓陆相中生代地层发育 ,由于缺乏可靠生物化石证据 ,地层的划分和对比直到现在仍然存在巨大分歧 ,这制约了造山带研究的深入。根据对发现的火山岩碎屑和 K- Ar同位素年代学数据 (10 3.6— 138.3Ma)研究 ,表明凤凰山组、周公山组和毛坦厂组同属于早白垩世 ,并且可能是同期异相产物 ;覆盖在毛坦厂组之上的黑石渡组亦为早白垩世。根据地层接触关系、同位素年龄数据和岩相对比 ,三尖辅组以中侏罗世为主 ,可能跨早、晚侏罗世 ,与防虎山组和圆筒山组为同期异相。已有的石榴石重矿物分析和孢粉研究支持上述结论。地层接触关系表明白大畈组为早白垩世火山岩。  相似文献   

16.
合肥盆地三尖铺组~(40)Ar-~(39)Ar同位素年代地层学研究   总被引:2,自引:0,他引:2  
合肥盆地南缘中生代红层层序及时代 ,由于缺乏可靠的化石依据 ,曾几经变动人为因素很大。根据三尖铺组红层中泥岩在沉积或成岩作用条件下形成的伊利石之 40 Ar- 39Ar定年 ,其坪年龄为 15 7.7~ 15 9.5 Ma,等时线年龄为 15 7.2~ 15 9.9Ma,并用 K- Ar法测年进行对比和验证 ,其值为 15 1.8~ 15 5 .8Ma,故确定其时代下限应为中侏罗世晚期 (卡洛维期 ) ,上限可能达晚侏罗世早期 (牛津期 )。40 Ar- 39Ar坪年龄谱还记录了晚侏罗世—早白垩世岩浆活动热事件信息 ,以及三尖铺组红层中陆源碎屑之母岩 (云母片岩及片麻岩等 )形成的冷却史。  相似文献   

17.
中生代合肥盆地南部的沉积过程与大别山变质地体的剥露   总被引:6,自引:1,他引:6  
合肥盆地南部的构造-沉积演化历史可划分出两个不同阶段,即侏罗纪伸展断陷和盆地向南扩展阶段和早白垩世盆地南缘火山喷发和盆地向北退缩阶段。合肥盆地自早侏罗世开始形成,强烈的断陷-沉积作用发生在中、晚侏罗世。盆地边缘沉积主要由冲积扇与辫状河体系组成,明显受边缘正断层控制,并且随断层向南迁移,盆地也不断向南扩展。盆地主体沉积以河流-湖泊体系为特征。古流向恢复结果证明盆地沉积物来自于大别山变质地体。下侏罗统防虎山组中含柯石英包体的三叠纪变质锆石的发现表明,超高压岩石在早侏罗世就已经剥露到地表。凤凰台组中榴辉岩砾石的出现指使大别山在晚侏罗世经历了强烈的抬升和剥蚀。合肥盆地南部在早白垩世时开始抬升,并发生强烈的火山喷发,盆地沉积范围向北明显迁移。合肥盆地二阶段式构造-沉积演化过程反映,大别山及邻区的构造体制在侏罗纪末发生了明显的变化。我们认为大别山变质地体在侏罗纪时期可能是通过构造挤出的方式折返到地表的,这种挤出构造过程一方面导致大别山变质地体的前缘(南缘)发育逆冲推覆构造和形成前陆盆地,另一方面也同时造成其后缘(北缘)发生伸展拆离和产生断陷盆地。早白垩世时期大别山所经历的区域性地壳伸展和强烈的岩浆活动可能与深部岩石圈的拆沉和软流圈热物质的上涌有关。  相似文献   

18.
The northern Yangtze foreland basin system was formed during the Mesozoic continental collision between the North and South China plates along the Mianlue suture. In response to the later phase of intra-continental thrust deformation, an extensive E–W-trending molasse basin with river, deltaic, and lake deposits was produced in front of the southern Qinling–Dabieshan foreland fold-and-thrust belt during the Early–Middle Jurassic (201–163 Ma). The basin originated during the Early Jurassic (201–174 Ma) and substantially subsided during the Middle Jurassic (174–163 Ma). A gravelly alluvial fan depositional system developed in the lower part of the Baitianba Formation (Lower Jurassic) and progressively evolved into a meandering river fluvial plain and lake systems to the south. The alluvial fan conglomerates responded to the initial uplift of the southern Qinling–Dabieshan foreland fold-and-thrust belt after the oblique collision between the Yangtze and North China plates during the Late Triassic. The Qianfoya Formation (lower Middle Jurassic) mainly developed from shore-shallow lacustrine depositional systems. The Shaximiao Formation (upper Middle Jurassic) predominantly consists of thick-bedded braided river delta successions that serve as the main body of the basin-filling sequences. The upward-coarsening succession of the Shaximiao Formation was controlled by intense thrusting in the southern Qinling–Dabieshan fold-and-thrust belt. Palaeogeographic reconstructions indicated an extensive E–W foredeep depozone along the fold-and-thrust belt during the Middle Jurassic (174–163 Ma) that was nearly 150 km wide. The depozone extended westward to the Longmenshan and further east to the northern middle Yangtze plate. The northern Yangtze foreland basin was almost completely buried or modified by the subsequent differential thrusting of Dabashan and its eastern regions (Late Jurassic to Cenozoic).  相似文献   

19.
准噶尔盆地南缘侏罗纪沉积相演化与盆地格局   总被引:28,自引:4,他引:24       下载免费PDF全文
通过对准噶尔盆地南缘侏罗系5条剖面的沉积特征对比,结合钻井资料和地震资料,确定了准噶尔盆地南缘侏罗纪盆地边界、沉积相演化及盆地格局。头屯河剖面和后峡剖面的沉积相对比及古流向测量表明二者在早、中侏罗世形成于同一沉积体系。在早、中侏罗世,沉积相逐渐从以辫状河-三角洲-湖泊相为主过渡到以河流相-湖泊相为主,沉积水体逐渐变浅;其中三工河组沉积时期盆地沉积范围达到最大,西山窑组沼泽相发育,车排子-莫索湾凸起自西山窑组沉积时期开始形成;早、中侏罗世的盆地边界至少位于后峡以南附近,此时不存在地理分割明显的天山山脉。晚侏罗世-早白垩世早期,沉积相从辫状河-滨浅湖相为主迅速演变为以辫状河-冲积扇相为主。在此期间盆地边界明显向北迁移,天山山脉明显隆升并造就天山南北沉积环境的巨大差异,博格达山构成盆地南缘的又一重要物源体系。  相似文献   

20.
天山及邻区中生代以来发育多个不整合面,其中下白垩统底部的不整合面规模最大,是一个贯穿全区的区域性不整合面。对中新生代沉积地层的碎屑锆石年代学研究和源区分析发现,碎屑物中含有大量晚中生代岩浆岩锆石,说明该地区存在一定规模的同时期岩浆活动。本研究认为,上述晚中生代的构造岩浆事件是燕山运动在天山及邻区的具体表现。早白垩世地层超覆不整合在不同时代的前白垩纪地层之上,不整合面以下的地层发育程度、剥蚀程度和构造变形强度在不同地区表现不同。在现今的天山山脉内部,下白垩统直接覆盖在中侏罗统头屯河组之上,上侏罗统齐古组和喀拉扎组整体缺失。在天山南北两侧的塔里木盆地、准噶尔盆地和吐哈盆地,上侏罗统局部发育,范围远小于中下侏罗统。进一步研究发现,盆地中的上侏罗统通常作为生长地层发育在晚中生代形成的褶皱古隆起翼部,依据上侏罗统齐古组中、下部凝灰岩层锆石U-Pb年代学数据和生物地层学资料,将燕山运动在天山及邻区的启动时间限定在160Ma左右。天山及邻区燕山期的构造变形具有多个方向,推测与中侏罗世晚期以来拉萨地块与亚洲南部边缘的碰撞、蒙古-鄂霍茨克洋的碰撞闭合以及俄罗斯东北部的Kolyma-Omolon地块与西伯利亚克拉通之间陆陆碰撞等构造事件的叠加影响有关,这也是晚中生代东亚多板块汇聚在天山及邻区的具体体现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号