首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The average seismic strain rate is estimated for the seismotectonic zone of the northern/central parts of the Gulf of Suez. The principal strain rate tensor and velocity tensor were derived from a combination of earthquake focal mechanisms data and seismic moment of small-sized earthquakes covering a time span of 13 years (1992–2004). A total of 17 focal mechanism solutions have been used in the calculation of the moment tensor summation. The local magnitudes (MLs) of these events range from 2.8 to 4.7. The analysis indicates that the dominant mode of deformation in the central and northern parts of the Gulf of Suez is extension at a rate of 0.008 mm/year in N28°E direction and a small crustal thinning of 0.0034 mm/year. This low level of strain means that this zone experienced a little seismic deformation. There is also a right lateral shear motion along the ESE–WNW direction. This strain pattern is consistent with the predominant NW–SE normal faulting and ESE–WNW dextral transtensive faults in this zone. Comparing the results obtained from both stress and strain tensors, we find that the orientations of the principal axes of both tensors have the same direction with a small difference between them. Both tensors show a predominantly extensional domain. The nearly good correspondence between principal stress and strain orientations in the area suggests that the tectonic strength is relatively uniform for this crustal volume.  相似文献   

2.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

3.
A Mw 6.3 magnitude earthquake occurred on October 6, 2008 in southern Damxung County within the N–S trending Yangyi graben, which forms the northern section of the Yadong-Gulu rift of south-central Tibet. The earthquake had a maximum intensity of IX at the village of Yangyi (also Yangying) (29°43.3′N; 90°23.6′E) and resulted in 10 deaths and 60 injured in this sparsely populated region. Field observations and focal mechanism solutions show normal fault movement occurred along the NNE-trending western boundary fault of the Yangyi graben, in agreement with the felt epicenter, pattern of the isoseismal contours, and distribution of aftershocks. The earthquake and its tectonic relations were studied in detail to provide data on the seismic hazard to the nearby city of Lhasa.The Damxung earthquake is one of the prominent events along normal and strike-slip faults that occurred widely about Tibet before and after the 2008 Mw 7.9 magnitude Wenchuan earthquake. Analysis of these recent M ? 5.0 earthquake sequences demonstrate a kinematic relation between the normal, strike-slip, and reverse causative fault movements across the region. These earthquakes are found to be linked and the result of eastward extrusion of two large structural blocks of central Tibet. The reverse and oblique-slip surface faulting along the Longmenshan thrust belt at the eastern margin of the Tibetan Plateau causing the Wenchuan earthquake, was the result of eastward directed compression and crustal shortening due to the extrusion. Prior to it, east–west extensional deformation indicated by normal and strike-slip faulting events across central Tibet, had led to a build up of the compression to the east. The subsequent renewal of extensional deformational events in central Tibet appears related to some drag effect due to the crustal shortening of the Wenchuan event. Unraveling the kinematical relation between these earthquake swarms is a very helpful approach for understanding the migration of strong earthquakes across Tibet.  相似文献   

4.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

5.
We performed numerical simulations to determine the contemporary maximum horizontal compressive stress (σHmax) in the northeast India region, the Bengal basin (Bangladesh), and the adjoining Indo-Burma Ranges, with different boundary conditions. The regional tectonic stress was simulated using the finite element method (FEM) under the plane stress condition. Most of the study areas show NE–SW regional stress orientation, which is consistent with other stress indicators, such as earthquake focal mechanism solutions. The E–W trending Dauki fault, which separates the Shillong plateau to the north from the Bengal basin to the south, plays a major role in the stress distribution and regional deformation. This fault alone accommodates ~25% of the regional surface displacement rate of the study area. The fault pattern of the study area was also simulated using rheological parameters and the Mohr–Coulomb failure criterion. The simulated results reproduce the observed tectonic state of the area, including a strike-slip regime along the Dauki fault, in the southwestern part of the Bengal basin, and in the Tripura fold belt areas. The modeling indicates that the Brahmaputra valley to the north of the Shillong plateau and to the south of the Himalayan frontal thrust exhibits thrust/reverse faulting with a strike-slip component, and in the Indo-Burma Ranges, strike-slip faulting is predominant with a reverse fault component.  相似文献   

6.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   

7.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

8.
We localized crustal earthquakes in the Andean arc, between 35°S and 36°S, from December 2009 to May 2010. This research shows a seismicity increase, in a narrow longitudinal area, of more than nine times after the great Mw 8.8 Maule earthquake.The localized seismicity defines an area of ∼80 km long and ∼18 km wide and NNW to NNE trend. The Md magnitudes varied from 0.7 to 3.1 except for two earthquakes with Mw of 3.9 and 4.5, located in the northern end of the area. The focal mechanisms for these two last events were normal/strike-slip and strike-slip respectively.During 2011, a network of 13 temporary stations was installed in the trasarc region in Malargüe, Argentina. Sixty earthquakes were localized in the study region during an 8 month period.We explored how changes in Coulomb conditions associated with the mega-thrust earthquake triggered subsequent upper-plate events in the arc region. We assumed the major proposed structures as receiver faults and used previously published earthquake source parameters and slip distribution for the Maule quake. The largest contribution to static stress change, up to 5 bars, derives from unclamping resulting consistent with co-seismic dilatational deformation inferred from GPS observations in the region and subsidence in nearby volcanoes caused by magma migration.Three different Quaternary tectonic settings–extensional, strike-slip and compressional-have been proposed for the arc region at these latitudes. We found that the unclamping produced by the Maule quake could temporarily change the local regime to normal/strike-slip, or at least it would favor the activation of Quaternary NNE to N-trending dextral strike-slip faults with dextral transtensional movement.  相似文献   

9.
A 12-station temporary microearthquake network was established by the Geological Survey of India for aftershock monitoring of the January 26th, 2001 Bhuj earthquake (M w 7.6) in the Kutch district of Gujarat state, western India. The epicentres of the aftershocks show two major trends: one in the NE direction and the other in the NW direction. Fault-plane solutions of the best-located and selected cluster of events that occurred along the NE trend, at a depth of 15–38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth <10 km, on the other hand, show reverse faulting with right-lateral strike-slip motion, and the mid crustal and lower crustal aftershocks, at a depth of 15–38 km, show pure reverse faulting as well as reverse faulting with right-lateral and left-lateral strike-slip motions; these solutions are not comparable with the main-shock solution. It is inferred that the intersection of two faults has been the source area for stress concentration to generate the main shock and the aftershocks.  相似文献   

10.
Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress (σy) shows NW–SE and NNE–SSW to NE–SW orientations and horizontal extension (σ3) in NE–SW and WNW–ESE to NW–SE directions. Alignments of mesofractures show a maximum of NNE–SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N–S, NNE–SSW, NE–SW, ENE–WSW to E–W, WNW–ESE, and NNW–SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.  相似文献   

11.
The 10 June 2012 Mw 6.0 aftershock sequence in southwestern Anatolia is examined. Centroid moment tensors for 23 earthquakes with moment magnitudes (Mw) between 3.7 and 6.0 are determined by applying a waveform inversion method. The mainshock is a shallow focus strike-slip with reverse component event at a depth of 30 km. The seismic moment (Mo) of the mainshock is estimated as 1.28 × 1018 Nm and rupture duration of the Fethiye mainshock is 38 s. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a reverse component. The geometry of the focal mechanisms reveals a strike-slip faulting regime with NE–SW trending direction of T-axis in the entire activated region. A stress tensor inversion of focal mechanism data is performed to obtain a more accurate picture of the Fethiye earthquake stress field. The stress tensor inversion results indicate a predominant strike-slip stress regime with a NW–SE oriented maximum horizontal compressive stress (SH). According to variance of the stress tensor inversion, to first order, the Fethiye earthquake area is characterized by a homogeneous interplate stress field. The Coulomb stress change associated with the mainshock and the largest aftershock are also investigated to evaluate any significant enhancement of stresses along the Gulf of Fethiye and surrounding region. Positive lobes with stress more than 0.4 bars are obtained, indicating that these values are large enough to increase the Coulomb stress failure towards NNW–SSE and E–W directions.  相似文献   

12.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

13.
Fault kinematic analysis and inversion of focal mechanisms of shallow earthquakes reveal significant evolution of the regional stress regime in the northeastern most corner of the Eastern Mediterranean region since the Mio-Pliocene to the present time. This study was carried out in the interaction area between the Arabian/African plates and the Anatolian block. The evolution of stress regimes consists of a change from older transpression to younger transtension. Both strike-slip stress regimes having a NNW- to northwest-trending σHmax (σ1) and ENE- to northeast-trending σHmin (σ3) axes induce a sinistral component of displacement on the major intra-continental Karatas–Osmaniye and Misis–Ceyhan faults elongated with the northeast-trending Misis Range between Adana and Osmaniye provinces (sub-area i) and by a NNE-trending plate boundary Amanos fault running along Amanos Range between Antakya and Kahramanmaras provinces (sub-area ii). The inversion results show that the transtensional stress regime is dominantly strike-slip to extension, with an ENE- to northeast-trending σHmin (σ3) axis for sub-areas (i) and (ii), respectively. The inversions of earthquake focal mechanisms indicate that the transtensional stress regime is still active in the whole study area since probably recent Quaternary time. To cite this article: S. Over et al., C. R. Geoscience 336 (2004).  相似文献   

14.
In this study we computed recent seismicity and present kinematic regime in the northern and middle zones of Gulf of Suez as inferred from moment tensor settlings and focal mechanism of local earthquakes that happened in this region. On 18 and 22 of July, 2014 two moderate size earthquakes of local magnitudes 4.2 and 4.1 struck the northern zone of Gulf of Suez near Suez City. These events are instrumentally recorded by Egyptian National Seismic Network (ENSN). The earthquakes have been felt at Suez City and greater Cairo metropolitan zone while no losses were reported. The source mechanism and source parameters of the calculated events were considered by the near-source waveform data listed at very broadband stations of ENSN and supported by the P-wave polarity data of short period stations. The new settling method and software used deem the action of the source time function, which has been ignored in most of the program series of the moment tensor settling analysis with near source seismograms. The obtained results from settling technique indicate that the estimated seismic moments of both earthquakes are 0.6621E + 15 and 0.4447E + 15 Nm conforming to a moment magnitude Mw 3.8 and 3.7 respectively. The fault plan settlings obtained from both settling technique and polarity of first-arrival indicate the dominance of normal faulting. We also evaluated the stress field in north and middle zones of Gulf of Suez using a multiple inverse method. The prime strain axis shows that the deformation is taken up mainly as stretching in the E–W and NE–SW direction.  相似文献   

15.
This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al.The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale.The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (σH): roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW-SSE oriented one across the southern Caribbean PBZ. Meanwhile, northern Venezuela, although dextral strike-slip (SS) is the dominant process, NW-SE to NNW-SSE compression is also taking place, which are both also supported by recent GPS results.  相似文献   

16.
The tectonic effects of the Thulean mantle plume on the opening of the North Atlantic Ocean is still poorly understood. An analysis of the brittle deformation affecting the Late Cretaceous Chalk and Lower Tertiary igneous formations cropping out in Ulster (Northern Ireland), part of the Thulean Province, leads to the recognition of two tectonic phases. Each of these phases is characterized by different stress regimes with similar trends of the horizontal maximum principal stress σH. The first phase, syn-magmatic and dominated by NE–SW to ENE–WSW extension, occurred during the Palaeocene. It is followed by a second post-magmatic phase, characterized initially by a probably Eocene strike-slip to compressional palaeo-stress regime with σ1 (=σH) trending NE–SW to NNE–SSW associated with the partial reactivation (as reverse faults) of normal faults formed during the first phase NE–SW extension. This episode is postdated by an Oligocene extension, with σH (=σ2) still striking NNE–SSW/NE–SW, which reactivated Eocene strike-slip faults as nearly vertical dip-slip normal faults. This Palaeogene tectonic evolution is consistent with the tectonic evolution of similar age in western Scotland and in the Faeroe Islands. In particular, the post-magmatic NE–SW compression is here related to the ‘Faeroe compressive event’, which is related to the earliest stages of drift of the Greenland plate.  相似文献   

17.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

18.
The southern termination of the left-lateral ‘Moyenne Durance’ Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ1 to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).  相似文献   

19.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

20.
A shallow-focus (3.8?km deep) and low-magnitude (M L 3.8) earthquake occurred near Sheikhupura on August 08, 2010. Shaking was felt in parts of Potwar and northern Punjab but no associated damage has been reported. Tectonically, this earthquake occurred to the south of the Salt Range in the Punjab Seismic Zone (PSZ), a shallow-focus, moderate-level seismic zone characterized by steeply dipping strike-slip and extensional faults. The focal mechanism solution, using the seismological data of the United States Geological Survey and local observatory, shows an EW-trending fault plane dipping 710?N similar to the normal faults reported in the area previously. On the basis of the imposition of the stress field on the northward-moving Indian plate and the nature of the FMS of the previous and this earthquake, the Sheikhupura earthquake is considered as one of the intraplate earthquakes occurring frequently in the PSZ. The location of the event on the Bouguer gravity maps coincides with the zone of high gravity anomaly reflecting igneous intrusion(s) or, more likely, structural disturbances (i.e., extensional faulting in the basement).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号