首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

2.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

3.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

4.
Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress (σy) shows NW–SE and NNE–SSW to NE–SW orientations and horizontal extension (σ3) in NE–SW and WNW–ESE to NW–SE directions. Alignments of mesofractures show a maximum of NNE–SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N–S, NNE–SSW, NE–SW, ENE–WSW to E–W, WNW–ESE, and NNW–SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.  相似文献   

5.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

6.
Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P–B–T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E–W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events − (1) NE–SW σ3 in strike-slip to extensional regime along with an additional event having NW–SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE–WNW or NNE–SSW σ1 mainly from younger Kurnool samples.Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.  相似文献   

7.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

8.
The identification of three independent rifting events in the Colorado basin area highlights the complexity of its Mesozoic rifting history, which ended in the Early Cretaceous with the opening of the South Atlantic Ocean. A first rifting event, associated with the extensional reactivation of previously compressive thrusts of the Ventania‐Cape fold belt, is transected by faults forming the main depocenters of the Colorado and possibly the adjacent Salado basin. The second and main rifting stage is correlated with the Early Jurassic Karoo rifting. In the Early Cretaceous, WNW–ESE extension produced NNE‐trending landward‐dipping faults, concentrated in the outer 100–200 km of the continental crust domain, possibly coeval with SDR emplacement. This is the first identification of three superimposed rifting settings in the southern South Atlantic realm and is key to understanding the complex Mesozoic breakup history of SW Gondwana.  相似文献   

9.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

10.
The Australian continent displays the most complex pattern of present-day tectonic stress observed in any major continental area. Although plate boundary forces provide a well-established control on the large-scale (>500 km) orientation of maximum horizontal stress (SHmax), smaller-scale variations, caused by local forces, are poorly understood in Australia. Prior to this study, the World Stress Map database contained 101 SHmax orientation measurements for New South Wales (NSW), Australia, with the bulk of the data coming from shallow engineering tests in the Sydney Basin. In this study we interpret present-day stress indicators analysed from 58.6 km of borehole image logs in 135 coal-seam gas and petroleum wells in different sedimentary basins of NSW, including the Gunnedah, Clarence-Moreton, Sydney, Gloucester, Darling and Bowen–Surat basins. This study provides a refined stress map of NSW, with a total of 340 (A–E quality) SHmax orientations consisting of 186 stress indicators from borehole breakouts, 69 stress measurements from shallow engineering methods, 48 stress indicators from drilling-induced fractures, and 37 stress indicators from earthquake focal mechanism solutions. We define seven stress provinces throughout NSW and determine the mean orientation of the SHmax for each stress province. The results show that the SHmax is variable across the state, but broadly ranges from NE–SW to ESE–WNW. The SHmax is approximately E–W to ESE–WNW in the Darling Basin and Southeastern Seismogenic Zone that covers the west and south of NSW, respectively. However, the present-day SHmax rotates across the northeastern part of NSW, from approximately NE–SW in the South Sydney and Gloucester basins to ENE–WSW in the North Sydney, Clarence-Moreton and Gunnedah basins. Comparisons between the observed SHmax orientations and Australian stress models in the available literature reveal that previous numerical models were unable to satisfactorily predict the state of stress in NSW. Although clear regional present-day stress trends exist in NSW, there are also large perturbations observed locally within most stress provinces that demonstrate the significant control on local intraplate sources of stress. Local SHmax perturbations are interpreted to be due to basement topography, basin geometry, lithological contrasts, igneous intrusions, faults and fractures. Understanding and predicting local stress perturbations has major implications for determining the most productive fractures in petroleum systems, and for modelling the propagation direction and vertical height growth of induced hydraulic fractures in simulation of unconventional reservoirs.  相似文献   

11.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

12.
The aim of the present work is to evaluate the stress direction and the tectonic trends of the study area using magnetic anisotropy and potential field data interpretations (Bouguer and aeromagnetic). The specific objective of the gravity and aeromagnetic interpretation is to establish the trend and depth of the structural configuration of the basement rocks. Horizontal gradient techniques could to delineate directions of deep sources and enabled tracing several faults, lineaments and tectonic boundaries of basement rocks. The trend analysis shows N40°?C50°W, N10°?C20°W and N10°?C20°E which may be related to the Gulf of Suez, Red Sea and Gulf of Aqaba stresses. However, Euler Deconvolution technique was applied using the aeromagnetic data to provide reliable information about penetrated source depth (100 m and ??10.0 km) and trends of the subsurface sources (principally in NW and NE directions). Moreover, representative 72 oriented rock samples have been collected from seven sites in the study area. The rock magnetic properties and magnetic anisotropy analysis have been determined for all the studied samples. The interpretation clearly defined magnetic lineation at all sites and anisotropy of magnetic susceptibility (AMS) parameters. The stress direction of the studied area has been evaluated using magnetic anisotropy and geophysical analysis. Generally the estimated geophysical data analysis (Bouguer and aeromagnetic) are well consistent with the AMS interpretations of this study. The results indicated that the directions of predominant faults and foliations are NW-SE (related to the Gulf of Suez and Red Sea rifting) which indicate that the main stress and tectonic trend is NE-SW, which is more predominant in southern Sinai region. Moreover, it is clear that, the studied area was affected also by less predominant sources trended in NE-SW direction, which related to the tectonic activity of Gulf of Aqaba. The least predominant is north 40°?C50° east that is probably due to the Syrian Arc system. Finally, our results are extremely coincided with the previous stress directions derived from geological, seismological and tectonic analysis in northern Red Sea rift, Gulf of Suez and Sinai regions.  相似文献   

13.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

14.
构造因素分析是成矿过程分析的基本要素之一。本文通过对各古构造层中发育的共轭剪节理和褶皱测量统计,恢复了本区白垩纪以来的各期古构造应力场,发现各期古构造应力场的中间主应力轴均为近水平状态,其中建德期最大主压应力方向为NW向,衢江期最大主压应力方向为NNE向,始新世–渐新世期最大主压应力方向为近EW向。指出本区球川–萧山断裂等NE向区域大断裂构造开启的期次,决定了成矿期次,开启的时间决定了铀矿形成的年龄,其开启时序明显受古构造应力场发展演化控制。建德期晚期,随着NW向挤压应力场转为应力松弛状态,区域大断裂处于开启状态,火山喷发期后的深部含矿流体沿区域大断裂向上运移,形成了本区早期铀成矿(125~115 Ma),衢江期NNE向挤压构造应力场使本区区域大断裂再次开启,带来了深部成矿流体,形成了第二期铀成矿(90~70.2 Ma),两期铀成矿叠加最终形成了本区的铀矿化定位。  相似文献   

15.
冀中坳陷中生代构造变形的转换及油气   总被引:15,自引:3,他引:15  
冀中坳陷中生代构造变形主要包括印支期古亚洲域的北西西向和燕山期环太平洋域的北东、北北东向压性构造及其配套的北西向张性构造。前者主要是残存的徐水─任丘古隆起带,次要则如留西─大王庄古隆起带等;后者除了北东向的高阳─无极隆起带以外,则以同向的断裂构造为主。西界为太行山东伸展断层,而东界为 (古 )马西逆冲断层和 (古 )里坦逆冲断层以及 (古 )宁晋逆冲断层、 (古 )新河逆冲断层等构成叠瓦状逆冲系统。古亚洲域向环太平洋域的转换时期在中侏罗─早白垩世之间。中生代构造研究可以为冀中坳陷深层油气提供潜山圈闭、下第三系披覆背斜圈闭和岩性圈闭等有利勘探目标。  相似文献   

16.
Brittle tectonic analysis of Cretaceous–Paleogene sediments at a total of 17 sites located in the Isle of Wight (U.K.) enables four main tectonic events that occurred prior to and after the folding to be identified and successive palaeostress tensors to be determined using the inversion method. Three of the events can be shown to have occurred prior to the folding: (1) a syn-sedimentary extension of Upper Cretaceous age; (2) a strike-slip faulting regime with an ESE–WNW direction of compression; (3) a compressional regime, marked by strike-slip faulting, with an NNE–SSW to N–S direction of compression. The fourth and last compressional event took place after the folding and is characterised both by reverse and strike-slip faulting, with a dominant N–S direction of compression. Syn-folding faults also developed between the third and fourth events. All four events can be connected to the extensional tectonics and different steps of structural inversion, both of which were integral to the development and evolution of the Wessex basin.  相似文献   

17.
We conducted hydraulic fracturing (HF) in situ stress measurements in Seokmo Island, South Korea, to understand the stress state necessary to characterize a potential geothermal reservoir. The minimum horizontal principal stress was determined from shut-in pressures. In order to calculate the maximum horizontal principal stress (S Hmax) using the classical Hubbert–Willis equation, we carried out hollow cylinder tensile strength tests and Brazilian tests in recovered cores at depths of HF tests. Both tests show a strong pressure rate dependency in tensile strengths, from which we derived a general empirical equation that can be used to convert laboratory determined tensile strength to that suitable for in situ. The determined stress regime (reverse-faulting) and S Hmax direction (ENE–WSW) at depths below ~300 m agrees with the first order tectonic stress. However the stress direction above ~300 m (NE–SW) appears to be interfered by topography effect due to a nearby ridge. The state of stress in Seokmo Island is in frictional equilibrium constrained by optimally oriented natural fractures and faults. However, a severe fluctuation in determined S Hmax values suggests that natural fractures with different frictional coefficients seem to control stress condition quite locally, such that S Hmax is relatively low at depths where natural fractures with low frictional coefficients are abundant, while S Hmax is relatively high at depths where natural fractures with low frictional coefficients are scarce.  相似文献   

18.
Located in the centre of the Argentinean Patagonia between 46° and 49°S, the Deseado Region represents the foreland domain of the Southern Patagonian Andes. Its geology is characterized by thick Mesozoic sequences which, at its eastern sector, present a Mesozoic and Cenozoic geologic evolution which has been strongly determined by the development of three major tectonic phases. The present research is based on field geological mapping, interpretation of seismic and aeromagnetic data, as well as satellite image analysis. This approach has allowed us to identify and characterize the deformation that occurred throughout Jurassic, Cretaceous and Miocene times. We interpret that the most relevant structural features are the result of normal faulting generated as a response to the Jurassic rifting stage. These extensional features have strongly influenced the subsequent geometry and distribution of younger Cretaceous and Cenozoic structures.The Jurassic extensional deformation, which affected major areas of Southern Gondwana, is the product of a major intra-continental rifting stage which was accompanied by synkinematic volcanism. This tectonic regime is characterized by SW-NE directed extension that generated major oblique WNW trending faults accommodating regional dextral-extension. In the study area, this tectonic regime is inferred from the geometries of major fault systems interpreted from available seismic reflection data, as well as from the spatial distribution and orientation of the extensional fracturing associated with the opening of hybrid and dilatational siliceous epithermal Au–Ag veins.Following the Jurassic rifting stage, a more restricted Cretaceous -post-Neocomian-compressional tectonic phase took place. Throughout this period, we interpret the previously formed Jurassic extensional structures to have been reactivated under sinistral transpression. Deformation during this period generated sinistral-reverse WNW belts of deformation, which accommodated reverse faulting, imbricate thrusts, dextral and sinistral R1 and R2 shears and disharmonic folds due to a buttress effect.Under the post-Oligocene Andean regime, W–E directed compression acted on previously-formed N to NNE-oriented normal faults. Compression and shortening uplifted a series of narrow and sub-meridional ranges which run as a 200 km long inversion-related tectonic front along the Patagonian foreland. Between 47°11′ and 48°40′S, one of these NNE ranges divides the entire Deseado Region into two distinctive structural domains. Whilst the western domain presents dominant NNW morphotectonic features, that to the east appears highly dominated by WNW fabrics of Jurassic and Cretaceous age.The structural features of the Eastern domain appear to extend further north of the Deseado Region towards the vicinity of the San Jorge Gulf. This WNW-trending belt hosts pre-Upper Cretaceous rocks and pre-drift basement rocks which include igneous Paleozoic metamorphic rocks and Permian to Triassic sedimentary units.The Deseado region’s epithermal Au–Ag Jurassic vein systems result from the infilling and deposition of low temperature hydrothermal fluids within dilatational and hybrid structures. These spectacular vein systems are compatible with the regional SW-NE extension direction controlled by the Jurassic intra-continental rifting of southern Gondwana. Dilatational and hybrid veins are preferentially hosted by fractures in the Jurassic volcanic rocks, while the veins located within the pre-volcanic basement preferentially infill normal faults. Finally, most of these epithermal vein fields where exhumed during a moderate phase of inversion during Cretaceous times.  相似文献   

19.
Subsurface structural trends and tectonics affecting the offshore Nile Delta area, Egypt, have been studied through the interpretations of gravity and magnetic data. Reduced to the pole, regional–residual separation, Tilt derivative and Euler deconvolution techniques are applied for the processing and interpretations of the magnetic and gravity data. The average depth of the sedimentary cover, estimated from the two-dimensional power spectrum technique ranges between 8 km and 13 km. The interpretation of the gravity and magnetic data indicates that the study area is affected by many subsurface structural trends. The NW–SE is the major trend related to El-Temsah and Misfaq-Bardwil trend. The NE–SW direction is the second dominant trend, related to the Rosetta trend. Other trends defined through the interpretation of gravity and magnetic data include: the N–S direction, related to the Baltim fault trend, the E–W direction, related to the Neogene hinge line and the NNE–SSW related to the Gulf of Aqaba. Accessory trends include the ENE–WSW, WNW–ESE and finally the NNW–SSW.  相似文献   

20.
Cortés  & Maestro 《地学学报》1998,10(5):287-294
Palaeostresses inferred from brittle mesostructures in the eastern Duero Basin show a recent stress field characterized by an extensional regime, with local strike-slip and compressional stress states. Orientations of the maximum horizontal stress ( SHmax ) show a relative scattering with two main modes: NNE to NE–SW and NW–SE. These orientations suggest the existence of two stress sources responsible for the dominant directions of the maximum horizontal stress in northeastern Iberia. Extensional structures within a broad-scale compressional stress field can be related to both the decrease in relative stress magnitudes from active margins to intraplate regions and rifting proccesses ocurring in eastern Iberia. Stress states with NW–SE-trending SHmax are compatible with the dominant pattern established for western Europe. NE–SW orientations of SHmax suggest the occurrence of tectonic forces coming from the Pyrenean zone. Geological and geophysical data indicate the existence of both orientations from the upper Miocene to the present-day in NE Iberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号