首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 423 毫秒
1.
利用阿勒泰地区3个采样点的西伯利亚云杉(Picea obovata)树轮样本,建立了区域树轮宽度标准化年表。单相关普查发现,阿勒泰地区区域树轮宽度标准化年表与该区域5个气象站上年7月至当年6月降水量相关显著(R=0.714,P<0.00001)。用区域树轮宽度标准化年表可较好地重建该区域上年7月至当年6月的降水量,解释方差达51.0%,验证表明降水重建序列是可信的。重建序列经历了4个偏湿期和4个偏干期。存在2.2~2.5 a的显著周期(P<0.05)及146、2.8、2.1、2.0 a的较显著周期。在1889年发生从少到多的突变。空间相关分析表明重建结果对阿勒泰地区降水具有较好的代表性。重建结果与阿尔泰山、天山中部地区、吉尔吉斯斯坦东部天山北坡的降水变化趋势和干湿阶段具有较好的一致性,与PDSI变化趋势也有较好的一致性。  相似文献   

2.
祁连山中部树木年轮宽度与气候因子的响应关系及气候重建   总被引:33,自引:13,他引:20  
研究了祁连山中部不同海拔高度青海云杉的树轮宽度对气候因子的响应,重建了祁连山中部 230 a以来春季3~5月的降水和 170 a以来夏季6~8月的气温序列。结果分析发现,不同高度的云杉树轮生长对春季降水极为敏感,呈现显著正相关;对夏季气温的响应程度,各海拔高度却不相同,夏季气温对上、下限云杉生长有显著影响,但对于森林中部云杉作用并不明显,总体表现为负相关,夏季高温对树木生长不利。气候重建结果发现,祁连山中部的春季230 a以来经历了大幅度长阶段的干湿变化,存在明显的 69 a和 21a周期;170 a以来夏季气温变化频繁,存在明显的2~4a周期。目前,祁连山中部正处于相对干旱和温暖时期,呈现出向暖干方向发展的趋势。  相似文献   

3.
天目山地区树轮δ13C记录的300多年的秋季气候变化   总被引:6,自引:0,他引:6  
对采自浙江西天目山地区的柳杉树轮,交叉定年后,测定其δ^13C年序列。用趋势比率法去除大气δ^13C对树轮δ^13C年序列的影响后,分析了树轮δ^13C年序列对气候要素变化的响应。分析发现:柳杉树轮δ^13C年序列的高频振荡与该区9~12月气温及9月降水有较好相关性。重点重建了该地区9月降水量与平均最高气温两个气候要素300多年的气候变化,其变化模式表现为:冷-湿和暖-干的组合特征。统计结果显示:重建序列所反映的旱涝频率分布及其冷暖变化与该区的实测记录结果基本一致。表明:重建序列较好地反映了该区秋季气候变化历史。重建序列所反映的气候变化与我国近500a的气候变化及该区部分史料记载有较好的对应,并与青藏高原苟鲁错湖泊沉积及新疆阿勒泰地区树轮δ^13C记录的气候变化有部分对应,只是冷暖变化的起止时间有错动,反映了气候变化的区域差异。周期分析发现:重建序列含有准58.82a、21.28a、13.70a、3.23a、2.63a、2.33a、2.07a的周期,这些周期与行星、地心会聚的“力矩效应”变化周期、太阳辐射变化、太阳活动及“准两年振荡”周期相吻合,表明太阳辐射变化及ENSO现象对该区气候变化影响显著,也反映出天目山地区树轮δ^13C年序列对太阳活动及大范围的ENSO事件的记录能力。  相似文献   

4.
用树轮灰度重建乌孙山北坡4—5月平均最低气温   总被引:9,自引:5,他引:4  
利用2006年采自新疆伊犁乌孙山北坡3个采点的树轮样本,建立了树轮宽度年表,采用树轮图像分析法进一步建立了3种宽度年表和5种灰度年表。相关分析发现,在所有参数年表中乌孙山北坡3个树轮标准化全轮灰度年表序列与该地区4—5月平均最低气温显著相关,相关系数最大可达-0.552。经多方面检验可知,利用树轮标准化全轮灰度年表重建该地区过去324 a 的4—5月最低气温是可信的。通过对重建最低气温序列进行功率谱分析发现乌孙山北坡4—5月最低气温具有31 a、36 a和48 a的变化准周期;小波分析证实,31~32 a的低频变化周期最为显著,1800年以前,震荡随时间推移逐渐减弱,周期逐渐缩短,19世纪后期震荡加强,进入20世纪,震荡减弱,逐渐趋于稳定。4—5月平均最低气温经历了11高11低的变化阶段。  相似文献   

5.
在哈萨克斯坦东北部的阿尔泰山南坡,位于森林上限的西伯利亚落叶松的树轮宽度对生长季初期温度敏感,且在近年来气候变暖的背景下对温度的响应较为稳定,可以作为该区域温度变化的良好替代材料.利用森林上限区的树轮资料,从树轮宽度中提取初夏温度信息,建立了树轮宽度年表与卡通卡拉盖气象站6月平均温度的转换方程,重建了这一区域310年来的初夏温度变化历史,重建方程的方差解释量达到42.7%.由于校准期较长,利用独立检验方法对重建方程进行检验,各项检验的参数表明重建方程是稳定可靠的.重建序列与相邻的中国阿勒泰地区西部和阿尔泰山北坡树轮反映的温度变化序列的冷暖阶段是一致的,其中19世纪的温度波动较为明显,持续时间最长的冷期(1842-1871年)和暖期(1872-1906年)都出现在这个阶段.重建温度序列存在11a左右的周期,与太阳活动的周期一致.  相似文献   

6.
基于树木年轮宽度重建塔里木盆地西北缘水汽压变化   总被引:1,自引:0,他引:1  
利用新疆阿合奇县以南黑尔塔格山区的天山云杉树木年轮宽度资料,基于树轮宽度指数与阿合奇气象要素的相关分析发现该树木径向生长主要受水分条件限制。选择相关系数较高且生理意义明确的时段和要素,建立了树轮宽度标准年表与阿合奇上年8月至当年6月的平均水汽压的线性转换方程(R2=66.4%,Radj2=65.1%,p<0.001)。器测资料线性趋势分析表明,近56年来阿合奇的降水和水汽压呈一致的上升趋势。阿合奇1656-2012年的水汽压序列经历了4个偏干阶段(1666-1689年、1722-1749年、1820-1880年、1909-1988年)和4个偏湿阶段(1688-1721年、1750-1819年、1881-1908年、1989-002年)。在95%的置信水平上,重建序列存在显著的56.8 a、13.4 a、10.7 a、6.9 a、5.4 a、4.3 a、3.8 a和2.6 a的周期,其56.8 a的低频周期和6.9 a的周期对应天山山区的树轮重建序列中记录的周期特征。滑动T检验发现了显著性水平达到 0.001的6个突变年份(1720年、1827年、1910年、1751年、1874年、1988年)。重建序列中1988年水汽压增加的突变和1989年以来的偏湿阶段与中国西北(特别是天山山区和南疆西部)20世纪80年代以来增湿过程对应。阿合奇的水汽压重建序列与天山山区和阿克苏的降水记录的干湿阶段一致,但与同位新疆南部天山山区中部巴仑台的干湿阶段并不对应。  相似文献   

7.
根据山丹大黄沟的树轮样本,建立树轮宽度年表.相关分析发现,大黄沟树轮宽度差值年表与山丹上年8月至当年6月的降水存在显著的正相关,相关系数为0.654(P<0.00001).利用大黄沟的树轮宽度差值年表,可重建山丹近224年来上年8月至当年6月的降水变化.交叉检验表明降水重建结果稳定可靠.通过对降水重建序列与周边地区树轮降水重建序列和树轮年表资料的对比分析,发现该重建序列与周边地区的树轮重建降水的干湿阶段变化具有一定的同步性,并对西北地区极端干旱历史事件有良好的响应.多窗谱分析发现,重建降水序列具有4.2 a、3.4 a、3.2 a、2.6 a的准周期变化;滑动T检验法发现,重建降水序列在1887年、1908年发生过降水突变.  相似文献   

8.
特克斯河流域近236a降水变化及其趋势预测   总被引:3,自引:0,他引:3  
根据2006年采自特克斯河流域6个采样点的树轮样本研制的树轮宽度年表与气象资料,通过相关普查发现,特克斯河流域树轮标准化年表与上年7月至当年6月的降水存在显著的正相关,最高单相关系数为0.727.用库尔克尔也灭,小白代的树轮宽度标准化年表序列,可较好地重建该地区最近236 a的降水序列,方差解释量达54%,并通过交叉检验表明重建结果是稳定可靠的.近236 a,特克斯河流域上年7月至当年6月降水经历了8个偏湿阶段和8个偏干阶段,同时重建降水序列具有10.3 a、7.5 a、6.0 a、3.0 a、2.1 a的变化准周期,并在1790年,1911年,1929年,1974年发生过降水突变.采用毛毛虫-奇异谱分析法(Caterpillar-ssa)对该地区未来20 a的降水的自然变化进行预测.结果表明,21世纪的最初几年降水量将延续20世纪90年代以来增加的趋势,之后出现下降,并在2013~2016年前后最低值出现.  相似文献   

9.
叉子圆柏(Sabina vulgaris)年轮边界清晰,广泛分布于天山北坡海拔1 200~3 100m范围,比雪岭云杉的海拔分布范围更广。该树种最大树龄在200a以上,目前还未见利用这一树种开展树轮年代学研究的报道。建立了天山北坡东部木垒山区叉子圆柏的树轮宽度年表,分析其年表特征及其与木垒气象站降水量、降水日数、气温、蒸发量和标准化降水蒸发指数(SPEI)的相关关系,评估叉子圆柏的气候信息含量及其用于气候重建的潜力。结果表明:叉子圆柏树轮宽度具有较高的敏感度和序列间的一致性,树木径向生长受到当年生长季(3—8月)及其前期降水和蒸发的综合影响,宽度年表与当年的降水量和降水日数显著正相关,与气温和蒸发量显著负相关,与当年4—7月SPEI的正相关最为显著(n=55,r=0.650,P<0.0001)。基于一元线性方程(Y=2.783 X-2.975,R^2=42.2%,R_(adj)~2=41.1%),利用叉子圆柏树轮宽度重建了东天山北坡木垒4—7月SPEI变化。与基于雪岭云杉树轮宽度重建的东天山降水记录的比较表明:1860—2013年间二者相关系数为0.381,低频变化都记录了1910—1940年的持续干旱期。SPEI序列中的部分极端干旱年与降水记录并不一致,SPEI记录的20世纪90年代以来的持续偏干趋势在树轮降水记录中并不明显,可能是由于两个重建的要素和时段不一致,SPEI指数考虑了增温引起的蒸发作用加剧的影响。叉子圆柏主要分布在阳坡(雪岭云杉一般生长在阴坡),特别是可以在天山北坡雪岭云杉下树线以下的区域生长,叉子圆柏树轮宽度反映的气象要素和时段与雪岭云杉存在差异,因此在天山山区树轮年代学研究中能作为雪岭云杉的有益补充。  相似文献   

10.
叉子圆柏(Sabina vulgaris)年轮边界清晰,广泛分布于天山北坡海拔1 200~3 100m范围,比雪岭云杉的海拔分布范围更广。该树种最大树龄在200a以上,目前还未见利用这一树种开展树轮年代学研究的报道。建立了天山北坡东部木垒山区叉子圆柏的树轮宽度年表,分析其年表特征及其与木垒气象站降水量、降水日数、气温、蒸发量和标准化降水蒸发指数(SPEI)的相关关系,评估叉子圆柏的气候信息含量及其用于气候重建的潜力。结果表明:叉子圆柏树轮宽度具有较高的敏感度和序列间的一致性,树木径向生长受到当年生长季(3—8月)及其前期降水和蒸发的综合影响,宽度年表与当年的降水量和降水日数显著正相关,与气温和蒸发量显著负相关,与当年4—7月SPEI的正相关最为显著(n=55,r=0.650,P0.0001)。基于一元线性方程(Y=2.783 X-2.975,R~2=42.2%,R_(adj)~2=41.1%),利用叉子圆柏树轮宽度重建了东天山北坡木垒4—7月SPEI变化。与基于雪岭云杉树轮宽度重建的东天山降水记录的比较表明:1860—2013年间二者相关系数为0.381,低频变化都记录了1910—1940年的持续干旱期。SPEI序列中的部分极端干旱年与降水记录并不一致,SPEI记录的20世纪90年代以来的持续偏干趋势在树轮降水记录中并不明显,可能是由于两个重建的要素和时段不一致,SPEI指数考虑了增温引起的蒸发作用加剧的影响。叉子圆柏主要分布在阳坡(雪岭云杉一般生长在阴坡),特别是可以在天山北坡雪岭云杉下树线以下的区域生长,叉子圆柏树轮宽度反映的气象要素和时段与雪岭云杉存在差异,因此在天山山区树轮年代学研究中能作为雪岭云杉的有益补充。  相似文献   

11.
利用小海子(XHZ)采样点标准化树轮年表重建了博尔塔拉蒙古自治州(简称博州)中东部地区1622—2010年上年7月至当年6月降水量,相关系数为0.599,方差解释量达35.8%(调整自由度后为34.6%)。利用多种统计参数和独立资料对重建结果进行验证,表明降水量重建值具有较好的可信性。对重建降水量的分析表明:在这389年中,博州中东部地区降水量大体经历7个偏少阶段和7个偏多阶段,且与天山山区年降水显著相关,在波动上也比较一致;重建降水量序列具有2年左右的显著准周期。  相似文献   

12.
青藏高原全新世降水序列的集成重建   总被引:2,自引:1,他引:1  
青藏高原全新世降水变化对于过去全球变化研究有重要意义。在过去全球变化研究中, 大尺度区域降水序列重建缺乏可行、有效的方法, 本文以青藏高原作为研究区, 构建了分区古降水空间模拟-多区面积加权的集成方法, 重建全新世青藏高原降水序列。本研究以孢粉为环境证据, 选取有空间代表性的10 条由孢粉重建的高原样点降水序列, 获得716 条具有年代的定量降水记录, 建立全新世古降水记录数据集。借助GIS分析, 基于现代高原降水空间分布的地理因子模拟, 并与古降水记录相集成, 定量重建了高原全新世200 年分辨率的降水序列。结果显示:早全新世高原降水迅速增多, 并在9.0 kaBP达到极大值500 mm, 较现代高170 mm;9.0~5.6 kaBP是旺盛的湿润期, 降水总体比现代高出80 mm, 但呈现明显的下降趋势;5.6 kaBP以来降水减少, 降水与现代相当, 但波动幅度较小;集成序列与其他高低分辨率环境记录有很好的可比性, 说明集成序列有很好的代表性和一定的准确性。  相似文献   

13.
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there is less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mt. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling.  相似文献   

14.
乌鲁木齐河源467年春季降水的重建与分析   总被引:9,自引:3,他引:9  
通过相关分析发现,乌鲁木齐河树轮宽度年表与大西沟气象站4-5月降水相关性较好,最高单相关系数为0.490(α=0.001),且具有明显的树木生理学意义。本文使用逐步回归分析方法筛选出哈熊沟C点和波尔钦沟标准化年表建立重建方程,交叉检验结果显示该方程具有较好的稳定性,利用该方程重建了乌鲁木齐河源大西沟气象站467年春季(4-5月)降水的变化序列,解释方差达41.6%。对该序列的特征分析表明:(1)467年来乌鲁木齐河源4-5月降水经历了13个偏湿及12个偏干阶段;(2)467年来乌鲁木齐河源4-5月降水变化中,出现276个正常年、86个偏干年、98个偏湿年、5个干旱年、2个湿润年,最长的偏湿阶段为1646-1687年(42年),最长的偏干阶段为1704-1733年(30年),最湿的偏湿阶段为1694-1703年(平均降水量为86.9mm,比最近41a平均偏多18.7%),最干的偏干阶段为1635-1645年(平均降水量为60.0 mm,比最近41年平均偏少18.0%),最湿润年为1697年(98.2 mm, 34.2%),最干旱年为1951年(42.6 mm,-41.8%);(3)467年的重建春季降水长序列具有2.04-2.15年、2.25-2.31年、2.38年、31年、34.44年、51.67年和62年的变化准周期,并且在1635年、1704年、1758年、1781年、1832年和1915年发生过降水突变。  相似文献   

15.
1971-2009 年珠穆朗玛峰地区尼泊尔境内气候变化   总被引:3,自引:0,他引:3  
利用珠穆朗玛峰南坡尼泊尔境内(科西河流域) 的10 个气象站1971-2009 年月平均气温、月平均最高、最低气温和逐月降水资料, 采用线性趋势、Sen 斜率估计、Mann-Kendall 等方法分析区域气候变化状况及其时空特征, 并与珠穆朗玛峰北坡地区气候进行比较, 分析了珠穆朗玛峰地区气候变化的特征与趋势。结果表明:(1) 1971-2009 年间, 珠穆朗玛峰南坡年平均气温为20.0℃, 线性升温率为0.25℃/10a, 与北坡主要受年平均最低气温影响相反, 增幅主要受年平均最高气温升高的影响, 并且在1974 年及1992 年间出现两次显著增温, 增温特别明显的月份为2 月和9 月;(2) 该地区降水变化的局地性较强, 近40 年间年平均降水量为1729.01 mm, 年平均降水量以每年约4.27 mm的线性增幅有所增加, 但并不显著, 且降水月变化和季变化特征均不明显;(3) 由于珠穆朗玛峰南坡受到季风带来暖湿气流和喜马拉雅山阻挡的双重影响, 珠峰南坡的年平均降水量远高于北坡;(4) 珠穆朗玛峰南坡气温变暖的海拔依赖性并不明显, 且南坡地区的变暖趋势并没有北坡变暖趋势明显。  相似文献   

16.
树木年轮记录的天山北坡中部过去338 a降水变化   总被引:5,自引:1,他引:4  
 利用位于天山北坡中部9个气象站的降水资料与采自该地区的21个树木年轮年表序列进行分析。结果表明,9个气象站上年8月到当年7月的平均降水量与树木年轮标准化年表具有很好的相关性,最高单相关达到0.612(P<0.0001)。分析发现,生长季前期及春材形成期的降水变化对天山山区树木年轮径向生长量起着决定性作用。用四工河东白杨沟、呼图壁河赛热克巴依萨依、呼图壁河希热克久热特、四工河西白杨沟、奎屯河兰能果尔南5个标准化年表较好地重建了天山北坡中部近338 a来上年8月到当年7月的降水量,重建方程的方差解释量达到60.0%,经过统计检验和历史资料验证,表明重建序列是可靠的。对过去338 a天山北坡中部降水变化的特征分析表明,近338 a间,天山北坡中部降水大体经历了8个偏干和8个偏湿阶段,偏湿年份与偏干年份基本持平。最长的偏干阶段是1705—1750年,最干旱的阶段为1960—1989年,最干旱年份是1796年、1944年和1974年,降水偏少程度均大于27%;最长的偏湿阶段是1917—1959年,1690—1904年间为降水最为丰沛的时期。天山北坡中部338 a降水具有两年左右的变化准周期,在1751年发生了明显的由少到多的突变,在1958年前后发生了明显的由多到少的突变。  相似文献   

17.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

18.
基于GIS的祁连山区气温和降水的时空变化分析   总被引:9,自引:4,他引:5  
基于ArcGIS平台Geostatistical Analyst中的Kriging插值方法,和Spatial Analyst中的Surface Analyst,分析了祁连山区18个气象站点1960\_2005年气温、降水的数据,并且空间化显示了各年代间的气温、降水变化。结果表明:①1960\_2005年祁连山区的气温呈显著的上升趋势,升幅基本在0.5 ℃/10a左右,20世纪90年代中期以后气温上升最为明显,变幅最大超过1℃。②祁连山区的气温变化和西北地区的气温变化有很好的同步性。冬季气温分布趋势与夏季相同,但冬季南北坡的温差明显小于夏季。各月的平均气温直减率差别大,冬季气温直减率较低,春季气温直减率较大。③分析了祁连山区降水的累积距平,祁连山的东、中、西三段的降水在80年代以前都是呈下降的趋势,在80年代以后表现为显著增加,并且中部表现最为明显。在祁连山的北坡、南坡和的降水总体趋势变化也是在80年代,在80年代以前呈下降趋势,而80年代后为上升趋势。④祁连山区的降水呈上升趋势,降水具有明显的区域性和季节性, 从东南向西北逐渐减少,冬季降水均在13 mm以下,而在夏季降水量最高可达247 mm。  相似文献   

19.
 通过在祁连山东部互助地区采集的油松样本,建立标准树轮(STD)年表,重建该地区近188 a上年8月到当年6月的降水,解释方差为48.8%。根据重建结果,历史上的湿润时期有1850s—1860s、1930s末—1950s、1970s—1990s以及2000s;干旱时期有1830s—1840s、1900s、1920s,其中1920s的干旱在北方大范围内普遍存在。根据本文重建结果与周围地区降水和PDSI重建比较,发现该地区降水变化与贺兰山地区干湿变化最为相近,尤其是1940s以前,在1940s之后与青海省德令哈和祁连山中西部地区的重建结果更为相似。因此推测,祁连山东部地区在1940s前后受不同的气候类型主导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号