首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987113001151   总被引:1,自引:0,他引:1  
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Comp...  相似文献   

2.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

3.
Calc-alkaline, metaluminous granitoids in the north of Jonnagiri schist belt (JSB) are associated with abundant mafic rocks as enclave. The enclaves represent xenoliths of the basement, mafic magmatic enclaves (MME) and synplutonic mafic dykes. The MME are mostly ellipsoidal and cuspate shape having lobate margin and diffuse contact with the host granitoids. Sharp and crenulated contacts between isolated MME and host granitoids are infrequent. The MME are fine-grained, slightly dark and enriched in mafic minerals compare to the host granitoids. MME exhibits evidences of physical interaction (mingling) at outcrop scale and restricted hybridization at crystal scale of mafic and felsic magmas. The textures like quartz ocelli, sphene (titanite) ocelli, acicular apatite inclusion zone in feldspars and K-feldspar megacrysts in MME, megacrysts across the contact of MME and host and mafic clots constitute textural assemblages suggestive of magma mingling and mixing recorded in the granitoids of the study area. The quartz ocelli are most likely xenocrysts introduced from the felsic magma. Fast cooling of mafic magma resulted in the growth of prismatic apatite and heterogeneous nucleation of titanite over hornblende in MME. Chemical transfer from felsic magma to MME forming magma envisage enrichment of silica, alkalis and P in MME. The MME show low positive Eu anomalies whereas hybrid and host granitoids display moderate negative Eu-anomalies. Synplutonic mafic dyke injected at late stage of crystallising host felsic magma, display back veining and necking along its length. The variable shape, dimensions, texture and composition of MME, probably are controlled by the evolving nature and kinematics of interacting magmas.  相似文献   

4.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

5.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

6.
In this paper we document widespread coeval felsic-mafic magma interaction and progressive hybridization near Gurgunta in the northern part of Eastern Dharwar Craton (EDC) where mafic magma pulses have injected into a 2.5 Ga granite pluton. The pluton contains voluminous pink porphyritic facies with minor equigranular grey facies. The mafic body shows compositional variation from diorite to meladiorite with hornblende as the chief mafic mineral with lesser clinopyroxene and biotite. The observed variation on binary diagrams suggests that granite was evolved by fractional crystallization. Chemical characteristics such as higher Al2O3 and moderate to high CaO, Mg#, Ni, Cr, Co and V are interpreted by slab-melting. Mafic bodies show lower SiO2, Na2O and K2O; but higher CaO, Mg#, FeO, Cr, Ni and V; higher LREE with moderate to higher HREE which suggest their derivation from mantle. A major active shear zone has played an important role at the time of synplutonic mafic injection and hybridization process. Field evidences suggest that the synplutonic mafic body has injected into the crystallizing felsic magma chamber in successive stages. The first stage injection has resulted in extensive mixing and hybridization due to the liquidus state of resident felsic magma to which hot mafic magma was injected. However, progressive mixing produced heterogeneity as the xenocrysts started mechanically dispersed into hybrid magma. The second stage injection, after a time gap, encountered colder and viscous hybrid magma in the magma chamber, which inhibited free injection. As a consequence, the mafic magma spread into magma chamber as flows, producing massive mafic bodies. However, with the continued mafic pulses and the heat gradient, the viscosity contrasts of mafic magma and felsic magma were again lowered resulting in second stage mixing. This episode was followed by mingling when the granite was almost crystallized, but still viscous enough to accommodate lamellar and ribbon like mafic penetrations to produce mingling. The successive mixing and mingling processes account for the observed heterogeneity in the granite pluton.  相似文献   

7.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

8.
The Zhoukoudian pluton in the North China craton is a circular granodiorite intrusion containing porphyritic diorite dykes (PDDs), porphyritic granodiorite dykes (PGDs) and abundant mafic microgranular enclaves (MMEs), which provide an excellent opportunity to study fractional crystallization and magma mixing. The PDDs and PGDs are located in the western part of the pluton with the PDDs intruded by the PGDs. The dykes have similar mineral assemblages although plagioclase in the PDDs has higher anorthite content than the PGDs. Linear relationships between the SiO2 and most major and trace element contents, as well as a positive trend of initial 87Sr/86Sr ratios and a negative trend of epsilon Nd values with increasing SiO2 contents for the dykes suggest that both types were formed by assimilation and fractional crystallization of a common parental magma. Major oxide mass balance and trace element Rayleigh fractionation modeling points to early separation of garnet (11 %), clinopyroxene (27 %), orthopyroxene (16 %), plagioclase (25 %), biotite (19 %), and apatite (2 %) and late fractionation of hornblende (25 %), plagioclase (46 %), biotite (25 %), apatite (1 %), and magnetite (3 %). Most MMEs occur within the transitional granodiorite of the Zhoukoudian pluton. Zoned MMEs, dyke-like MME swarms, local presence of concave margins, veins and enclaves of host granodiorite within some MMEs, and several MMEs surrounded by the biotite-rich granodiorite support their formation by multiple magma mixing events, which finally resulted in different whole-rock major oxides and compatible elements, but homogeneous mineral major oxides (except zoned plagioclase), whole-rock incompatible elements and Sr-Nd isotopes between the MMEs and their host granodiorite. We suggest that multiple magma mixing events might also cause complexly zoned plagioclase in the Zhoukoudian pluton. Relative calcic, irregular or patchy cores and dusty zoned mantles from the zoned plagioclase crystals and their relatively low anorthite content indicate multiple mixing events between mafic/intermediate and felsic magmas. The mafic/intermediate end-members could be represented by the diabase dykes and the PDDs. Therefore, the dykes and MMEs in the Zhoukoudian pluton are genetically linked.  相似文献   

9.
《地学前缘(英文版)》2018,9(6):1711-1724
The Helanshan tectonic belt(HTB) is a major tectonic divide between the Alxa and Ordos blocks in the North China Craton. The geochronology and petrogenesis of the mafic dykes in the northern HTB are keys to understanding the tectonic evolution of this belt. The mafic dykes, intruded into the Neoarchean-Paleoproterozoic metamorphic basement, are mainly composed of diabase with a mineral assemblage of plagioclase(45%-60%), pyroxene(25%-35%), minor quartz and Fe-Ti oxides. The LA-ICPMS U-Pb analysis of zircon grains from representative dykes yield a weighted mean age of 206 ± 1.9 Ma, which represents the crystallization age of the dyke. The diabases show high contents of Fe_2 O_3~T(11.88-17.55 wt.%), low contents of SiO_2(45.65-50.95 wt.%) and MgO(3.31-5.50 wt.%) with low Mg#(=100×MgO/(MgO + FeO) atomic ration) of 33-44. They are characterized by enrichment of light rare earth elements(LREEs) and large ion lithophile elements(LILEs)(e.g., Rb, Ba and Pb), and slight depletion of high field strength elements(HFSEs). These features suggest that the magma has undergone extensive fractionation of olivine and pyroxene but only minor crustal contamination during its evolution. Their high Sm contents and La/Sm ratios, and low Sm/Yb ratios indicate that magma from which the dykes formed was derived from low degree(about 5%) partial melting of an enriched garnet + spinel lherzolite mantle source. Together with regional geology, these geochemical and geochronological data suggest that the mafic dykes in the HTB were formed in an intracontinental extensional setting during the late Triassic.  相似文献   

10.
In the northern-central portion of the Sergipano Orogenic System there is an expressive Neoproterozoic granitic magmatism with high-K calc-alkaline and shoshonitic affinities. The Glória Norte Stock (GNS, 45 km2) is the most important representative of the shoshonitic magmatism in one the domains of the Sergipano System, the Macururé. The contacts of the stock with the host metasedimentary rocks are discordant and steep, with generation of amphibolite facies hornfels. The GNS is made up of predominantly porphyritic quartz-monzonite and monzogranite. It shows a magmatic flow foliation defined by oriented mafic enclaves and feldspar phenocrysts, without evidence for solid state regional deformation. Mafic microgranular enclaves (MME) are abundant and present different sizes and shapes. Minette and biotite diopside cumulate enclaves are also present. Coexistence between two different magmas is indicated by crystal corrosion and dissolution textures, compositional zoning of feldspar and presence of clusters of mafic minerals. Grain size decrease towards the rims of the MME indicates fast cooling of small drops of mafic magma, due to temperature contrast with the felsic magma. The monzonites and granites of the GNS have shoshonitic affinity, and the enclaves are related to ultrapotassic suites (MgO > 3%, K2O > 3%). LREE are enriched as compared to HREE, and there are remarkable negative anomalies of Ta, Nb, Ti, P, Sr and Eu, mostly in the enclaves. The MME have been probably formed from a mantellic magma with shoshonitic affinity. The observed evolution from MME to quartz-monzonites and monzogranites is essentially linked to a process of fractional crystallization. The relations between Ta/Yb and Th/Yb ratios suggest enriched mantle as a possible source of this magmatism. The relative enrichment in Rb, Th, Ce and Sm indicates that magma was generated in post-collisional events. The U-PbSHRIMP age of 588 ± 5 Ma in zircon crystals indicates that the emplacement of the GNS represents a post-collisional magmatism, marking the end of collisional processes in the Macururé Domain.  相似文献   

11.
《International Geology Review》2012,54(14):1559-1575
The middle segment of the Yangtze River Deep Fault Belt, located in the foreland of the Dabie orogen, contains widely exposed volcanic–intrusive complexes that formed during two episodes of magmatism (post-collisional and post-orogenic), reflecting crust–mantle interactions during the Late Jurassic (J3) to Early Cretaceous (K1). This article summarizes research on the Mesozoic igneous suites and xenolith suites in the area along the Yangtze River. ‘Post-collisional magmatism’ occurred during lithospheric extension at ~145–130 Ma. Its beginning and end are marked by gabbroic xenoliths and pyroxene cumulates within intrusions at Tongling, and by alkali-rich magmatic rocks. The association includes peraluminous silicic rocks and metaluminous mafic–felsic igneous suites, ranging from medium-K to high-K calc-alkaline to shoshonitic compositions. Taking the Tongling region as an example, quartz monzodiorite yields a sensitive high resolution ion microprobe (SHRIMP) zircon U–Pb age of 139.5 ± 2.9 Ma, and granodiorite yields an age of 135.5 ± 4.4 Ma. These intrusive rocks contain 52.79–66.46 wt.% SiO2, 13.12–17.73 wt.% Al2O3, 1.37–4.62 wt.% MgO, 3.86–6.84 wt.% FeOT, and 4.71–7.87 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.62 to 1.20, and ANK values from 1.45 to 3.48. ‘Post-orogenic magmatism’ occurred during lithospheric delamination at ~130–120 Ma. The start of magmatism was marked by the formation of gabbro containing spinel lherzolite xenoliths in the Nanjing–Wuhu Basin (NWB), and its end was marked by the generation of feldspathoid phenocryst-bearing phonolite in the NWB and the Lujiang–Zongyang Basin (LZB), respectively. The association that formed during this episode ranges from alkaline to peralkaline. Taking the Niangniangshan Formation in the NWB as an example, the Nosite phonolite yields a whole-rock monomineral Rb–Sr isochron age of 120 ± 9 Ma, and contains 49.92–60.09 wt.% SiO2, 17.67–20.65 wt.% Al2O3, 0.08–2.45 wt.% MgO, 1.32–6.62 wt.% FeOT, and 9.24–13.92 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.72 to 1.24, and ANK values from 1.03 to 1.35.

The two magmatisms correspond to two episodes of crust–mantle interaction. The first involved intensive interaction between middle–lower crust and underplated basaltic magma derived from the upper mantle lithosphere, whereas the second involved minor interaction between the middle–lower crust and basaltic magma derived from the lower lithospheric mantle.  相似文献   

12.
The Kaleybar, Razgah and Bozqush (KRB) intrusions were studied to better understand subduction-related Eocene-Oligocene alkaline magmatism in NW Iran. The bulk of intrusions mainly consist of Si-undersaturated rocks including foid-bearing monzonite and syenite (nepheline syenite, pseudoleucite syenite) with some foid-bearing diorite and gabbro. In addition, they are spatially associated with Si-saturated rocks ranging in composition from monzo-diorite to syeno-granite. The main mafic rock-forming minerals of the studied rocks are olivine (Fo44Fa56), clinopyroxene (diopside to augite), biotite (Mg-biotite through Fe-biotite), amphibole (ferro-pargasite and magnesio-hastingsite with Mg#<0.55), and garnet (Ti-andradites). Based on whole rock geochemistry, the foid-syenites and associated rocks show mildly alkaline (shoshonitic) affinity. The content of SiO2, K2O?+?Na2O, and K2O/Na2O ratio ranges from 47.8 to 60.7?wt.%, 5.31 to 16.33?wt.%, and 0.6 to 3.2, respectively. The intrusions are commonly metaluminous, with an aluminum-saturation index (ASI) ranging from 0.66 to 1.01. Almost all the rocks display similar arc-related geochemical features characterized by the enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) together with the depletion in high field strength elements (HFSE). The chondrite-normalized REE patterns show no to marked negative Eu anomaly (Eu/Eu*?=?0.55 to 1.12), (La/Yb)N?=?8.16 to 31, (La/Sm)N?=?2.80 to 10.59, and (Tb/Yb)N?=?0.84 to 2.40. The evaluation of the REE patterns for the KRB magmas and the comparison of the trace element ratios with experimental studies indicate a chemically enriched lithospheric mantle source composed of garnet-spinel-lherzolite that have underwent a low degree of partial melting <5% to generate the KRB intrusions. Based on the present data, we infer that the mantle source was contaminated by a subduction component and the melting of the mantle lithosphere occurred by local extension in an overall convergent regime in NW Iran. The extension regime during the Eocene is proposed to be the result of the Neo-Tethys slab roll-back and the Sevan-Akera-Qaradagh (SAQ) slab break-off.  相似文献   

13.
Neoproterozoic (690±19 Ma) felsic magmatism in the south Khasi region of Precambrian northeast Indian shield, referred to as south Khasi granitoids (SKG), contains country-rock xenoliths and microgranular enclaves (ME). The mineral assemblages (pl-hbl-bt-kf-qtz-mag) of the ME and SKG are the same but differ in proportions and grain size. Modal composition of ME corresponds to quartz monzodiorite whereas SKG are quartz monzodiorite, quartz monzonite and monzogranite. The presence of acicular apatite, fine grains of mafic-felsic minerals, resorbed maficfelsic xenocrysts and ocellar quartz in ME strongly suggest magma-mixed and undercooled origin for ME. Molar Al2O3/CaO+Na2O+K2O (A/CNK) ratio of ME (0.68–0.94) and SKG (0.81–1.00) suggests their metaluminous (I-type) character. Linear to sub-linear variations of major elements (MgO, Fe2O3 t, P2O5, TiO2, MnO and CaO against SiO2) of ME and SKG and two-component mixing model constrain the origin of ME by mixing of mafic and felsic magmas in various proportions, which later mingled and undercooled as hybrid globules into cooler felsic (SKG) magma. However, rapid diffusion of mobile elements from felsic to mafic melt during mixing and mingling events has elevated the alkali contents of some ME.  相似文献   

14.
《Gondwana Research》2002,5(2):453-465
The Kunduru Betta Ring Complex (KRC), at the southern margin of Dharwar craton, South India, comprises metaluminous sub-solvus syenites and quartz monzonite with a concentric disposition younging towards the center. An outer mafic syenite (of lamprophyric affinity) is followed by porphyritic monzonite, quartz monzodiorite and finally a quartz monzonitic stock at the centre.SiO2, Al2O3 and Na2O increase from the primitive lamprophyric mafic syenite to the quartz monzonite through the intermediate members, while CaO, MgO, Fe2O3T, TiO2, P2O5 and MnO show an opposite trend suggesting fractionation of hornblende, clinopyroxene, biotite, apatite, sphene, and iron oxide minerals. Rb, Th and U increase with a complementary decrease in Sc, V, Cr, Co, Cu, Sr and Ba from the outer mafic syenite to the inner quartz monzonite. Y, Zr and Hf decrease from lamprophyric mafic syenite to quartz monzodiorite and the trend is reversed in the final quartz monzonite phase. However, the suite is characterised by a compositional gap between quartz monzodiorite and quartz monzonite. Total REE gradually decrease from the mafic syenite to quartz monzonite and the REE distribution patterns show LREE-enriched and HREE-depleted parallel distributions with negligible Eu anomalies.The geochemical data suggest that the rock types were formed as products of progressive differentiation by crystal fractionation of calc-alkaline lamprophyric parent magma which was derived by partial melting of metasomatically enriched mantle in the Kabini lineament. Although the quartz monzonites conform to the trend of differentiated Kunduru Betta suite, the compositional gap between them and the quartz monzodiorite precludes their origin by simple differentiation. It is suggested that convective liquid fractionation might have resulted in the discrete body of quartz monzonite.  相似文献   

15.
新疆富蕴希力库都克地区岩浆混合作用及其成矿意义   总被引:12,自引:0,他引:12  
新疆北部希力库都克地区为-斑岩型铜钼金矿区,含矿的花岗闪长岩体中广泛发育4种暗色岩微粒包体似隐晶状安山玄武岩、细粒闪长岩、少斑状安山(玢)岩和安山玢岩,矿区还产有安山玢岩、英安斑岩、正长岩等脉岩.花岗闪长岩及其包体的岩相学、矿物化学和岩石地球化学特征表明该区发生了岩浆混合作用,其中酸性的花岗闪长质与基性的闪长质岩浆混合,形成了过渡相岩石--安山玢岩质岩浆混合岩.本区矿化与暗色微粒包体有关矿化较好的地段暗色微粒包体较多,有些包体中磁铁矿微粒普遍发育,有时甚至含少量黄铁矿和黄铜矿等硫化物.研究发现,本区岩浆混合岩--安山玢岩,与蚀变矿化的花岗闪长岩虽然在野外产状和岩石结构上截然有别,但二者的化学成分相当接近在哈克图上二者的投影点靠近;稀土元素和微量元素上,标准化曲线型式相似(或相同),表明二者具有相似的成因,换言之,岩浆混合作用可能伴随了热液蚀变和矿化的发生.推测本区岩浆混合作用可能是幔源基性岩浆与陆壳花岗质岩浆的混合,由此产生的中酸性岩浆经过分异和流体作用造就了本区的铜钼金矿化.  相似文献   

16.
Ikizdere Pluton consists of granite, granodiorite, tonalite, monzonite, quartz monzonite containing pinkish colored K-feldspar megacrysts (KFMs). The crystal sizes of the KFMs range from 1 to 4 cm. The lath-shaped megacrysts are uniformly (i.e., randomly) distributed in the host plutonic rocks and have mafic and felsic inclusions whose crystal sizes are smaller than 1 mm. The crystal inclusions are biotite, slightly annitic in composition with XMg[=Fetot/(Fetot+Mg)]=0.50-0.58, amphibole (magnesio-hornblende, XMg[=Mg/(Mg+Fetot)]=0.70-0.79), iron-titanium oxide (low titanium magnetit and ilmenite), plagioclase (Ab75−25An65−35) and as minor quartz. The compositions of the KFMs range from Or95Ab5An0 to Or82Ab17An1. BaO contents of the megacrysts increase from core to rim. The mafic and felsic inclusions are compositionally similar those of the host rocks.The chemical and textural features of K-feldspar are typical for megacrysts that grew as phenocrysts in dynamic granitoidic magma systems. The overgrowth of KFMs and mafic magma injections (magma mixing) may be related to temperature, pressure and compositional fluctuations in the magma chamber. Remnant of earlier formed K-feldspar crystals remain in the felsic magma system, while the mafic injection can decompose some earlier precipitated KFMs. The remnant of K-feldspar remaining after mafic injection are overgrown by rapid diffusion of Ba, K and Na elements in liquid phase, during the later stages of crystallization of the host magma.  相似文献   

17.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

18.
Peralkaline syenite and granite dykes cut the Straumsvola nepheline syenite pluton in Western Dronning Maud Land, Antarctica. The average peralkalinity index (PI?=?molecular Al/[Na?+?K]) of the dykes is 1.20 (n?=?29) and manifests itself in the presence of the Zr silicates eudialyte, dalyite and vlasovite, and the Na–Ti silicate, narsarsukite. The dykes appear to have intruded during slow cooling of the nepheline syenite pluton, and the petrogenetic relationship of the dykes and the pluton cannot be related to closed-system processes at low pressure, given the thermal divide that exists between silica-undersaturated and oversaturated magmas. Major and trace element variations in the dykes are consistent with a combination of fractional crystallization of parental peralkaline magma of quartz trachyte composition, and internal mineral segregation prior to final solidification. The distribution of accessory minerals is consistent with late-stage crystallization of isolated melt pockets. The dykes give an Rb–Sr isochron age of 171?±?4.4 Ma, with variable initial 87Sr/86Sr ratio (0.7075?±?0.0032), and have an average ε Nd of ? 12.0. Quartz phenocrysts have δ18O values of 8.4–9.2‰, which are generally in O-isotope equilibrium with bulk rock. Differences in the δ18O values of quartz and aegirine (average Δquartz?aegirine = 3.5‰) suggest aegirine formation temperatures around 500 °C, lower than expected for a felsic magma, but consistent with poikilitic aegirine that indicates subsolidus growth. The negative ε Nd (< ? 10) and magma δ18O values averaging 8.6‰ (assuming Δquartz?magma = 0.6‰) are inconsistent with a magma produced by closed-system fractional crystallization of a mantle-derived magma. By contrast, the nepheline syenite magma had mantle-like δ18O values and much less negative ε Nd (average ??3.1, n?=?3). The country rock has similar δ18O values to the granite dykes (average 8.0‰, n?=?108); this means that models for the petrogenesis of the granites by assimilation are unfeasible, unless an unexposed high-δ18O contaminant is invoked. Instead, it is proposed that the peralkaline syenite and granite dykes formed by partial melting of alkali-metasomatised gneiss that surrounds the nepheline syenite, followed by fractional crystallization.  相似文献   

19.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

20.
The present study deals with geochemical characteristics and petrogenesis of three younger granite varieties (coarse-grained biotite-muscovite granites (CBG), garnetiferous muscovite granites (GMG) and Abu Aggag biotite granites (AAG)) in El-Hudi area, east of Aswan, southeastern desert of Egypt. Mineral chemistry and whole rock chemistry data revealed that all granites have high SiO2 (70.8-74.7 wt.%), Al2O3 (12.8-14.3 wt.%), Na2O and K2O (>3.2 wt.%) contents with high Na2O/K2O ratios (~>1). Plagioclase feldspars range in composition from albite to oligoclase (An9-27) in CBG, oligoclase (An13-18) in GMG and albite (An2-6) in AAG. Potash feldspars are mainly perthitic microcline and exhibit chemical formulae as (Or93-96 Ab7-4 An0) in CBG, (Or95-98 Ab5-2 An0) in GMG and (Or82-98 Ab18-2 An0) in AAG. Biotites from CBG and GMG are enriched in (Mg and Ti) and depleted in (Al, Fe, Mn and K) compared with those of AAG. Biotites from CBG and GMG had been derived from calc-alkaline magma, whereas those from AAG had been derived from peraluminous magma. Chlorites from CBG and GMG are Mg-Fe bearing, while that from AAG is Fe-rich chlorite (chamosite). The CBG and GMG are Mg-rich monzogranites originated from high-K calc-alkaline magma with metaluminous to mildly peraluminous nature. The AAG are Fe-rich monzogranites to syenogranites generated from high-K calc-alkaline peraluminous magma. Both CBG and GMG are late- to post-orogenic granites, while the AAG are post-orogenic granites. All three granite varieties are considered as evolved I-type granites, formed under low to moderate water pressures (~ 0.5-7 kbars) and relatively high ranges of crystallization temperatures (~700-890°C). They were generated from partial melting of crustal materials at lower (CBG >30 km depth) and intermediate (GMG & AAG ~20-30 km depth) levels. The crystal fractionation was the predominant process during differentiation of parent magmas of these granites. Geochemical characteristics manifest that AAG represent the highly fractionated member of magma cycle differs from that produced CBG and GMG. The CBG are relatively enriched in both U and Th existing only within the accessory minerals such as zircon, sphene, and allanite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号