首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

2.
The phytoplankton distribution off western Australia in the period from April to October is unique in that high biomass is generally associated with anticyclonic eddies and not with cyclonic eddies. As the western Australian region is oligotrophic this anomalous feature must be related to differing nutrient supply pathways to the surface mixed layer of cyclonic and anticyclonic eddies. A suite of modelled abiotic tracers suggests that cyclonic eddies are predominantly supplied by diapycnal processes that remain relatively weak until June–July, when they rapidly increase because of deepening surface mixed layers, which start to tap into the nutrient-replete waters below the euphotic zone. To the contrary, we find that anticyclonic eddies are predominantly supplied by injection of shelf waters, which carry elevated levels of inorganic nutrients and biomass. These injections start with the formation of the eddies in April–May, continue well into the austral winter and reach as far as several hundred kilometers offshore. The diapycnal supply of nutrients is suppressed in anticyclonic eddies since the injection of warm, low-salinity shelf waters delays the erosion of the density gradient at the base of the mixed layer. Our results are consistent with the observed seasonal cycles of chlorophyll a and observation of particulate organic matter export out of the surface mixed layer of an anticyclonic eddy in the region.  相似文献   

3.
Hydrographic data collected in cyclonic eddies in the Mozambique Channel and Basin revealed notable differences in temperature and salinity at a depth of 100 m, the upper mixed layer, the nitracline depths, and vertical distribution of chlorophyll-a (Chl-a). Differences in temperature and salinity did not show any consistent patterns. In contrast, the differences in the upper mixed layer, nitracline depths and the vertical Chl-a profile appeared to be driven by combined effects of eddy dynamics (i.e. shoaling of isopleths) and the seasonal variation in light availability and mixing conditions in the upper layers. Cyclonic eddies studied during austral spring and summer in the Mozambique Channel exhibited shallower upper mixed layers and nitracline depths, and deeper euphotic zones. Distinct subsurface Chl-a maxima (SCM) were associated with the stratified conditions in the upper layers of these eddies. In contrast, a cyclonic eddy studied during mid-austral winter in the Mozambique Basin had a shallower euphotic zone, deeper upper mixed layer and uniform Chl-a profiles. Another eddy sampled in the Mozambique Basin toward the end of winter showed a less pronounced SCM and roughly equal euphotic zone and upper mixed layer depths, suggestive of a transition from a well-mixed upper layer during winter to stratified conditions in summer.  相似文献   

4.
Two sets of high-resolution subsurface hydrographic and underway surface chlorophyll a (Chl a) measurements are used, in conjunction with satellite remotely sensed data, to investigate the upper layer oceanography (mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, to the spatially varying in situ and satellite measurements of Chl a concentrations is investigated. The observations provide evidence to show that the fronts act to both enhance phytoplankton biomass as well as to delimit regions of similar chlorophyll concentrations, although the front–chlorophyll relationships become obscure towards the end of the growing season due to bloom advection and ‘patchy’ Chl a behaviour. Satellite ocean colour measurements are compared to in situ chlorophyll measurements to assess the disparity between the two sampling techniques. The scientific value of the time-series of oceanographic observations collected at the GoodHope line between 2004 to present is being realised. Continued efforts in this programme are essential to better understand both the physical and biogeochemical dynamics of the upper ocean in the Atlantic sector of the Southern Ocean.  相似文献   

5.
依据2006~2007年夏、冬两季的北黄海海洋综合调查资料,分析了叶绿素和初级生产力的空间分布和季节变化特征,并浅析了其主要影响因素.夏季北黄海Chl a的平均含量为30.75 mg·m-2(7.64~92.57 mg·m-2),冬季平均含量为18.72 mg·m-2(3.04~50.55 mg·m-2),与夏季相比显著偏低(P<0.05).夏季Chl a浓度的垂直分布呈现较为明显的分层现象,最大值基本出现在次表层;冬季大部分海域垂直分布均匀.夏季水柱初级生产力含量的平均值为471.2 mg·m-2·d-1(70.1~1 308.2 mg·m-2·d-1),其分布大致呈现近岸海域高、东部开阔海域较低的格局;冬季平均值为125.4 mg·m-2·d-1(72.6~245.5 mg·m-2·d-1),约为夏季的1/4,且分布较均匀.北黄海夏季磷酸盐可能成为限制浮游植物生长的因素,而冬季无机氮和磷酸盐可能同时成为限制因子.夏季和冬季的海表温度与表层Chl a浓度之间均呈负相关关系,R2分别为0.44(P=0.01,n=73)和0.41(P=0.01,n=71).  相似文献   

6.
黄海冷水团水域浮游植物群落粒级结构的季节变化   总被引:4,自引:0,他引:4       下载免费PDF全文
根据2006—2007年度4个季节航次的实测资料,分析了黄海冷水团水域浮游植物叶绿素及其粒级结构的时空分布特征及季节变化规律,结果表明,在研究海域30 m以浅叶绿素总量的平均含量从高到低的顺序为:春季的(1.01 mg/m3)、夏季的(0.81 mg/m3)、秋季(0.72 mg/m3)、冬季(0.68 mg/m3);在叶绿素浓度大于1 mg/m3和小于1 mg/m3的区域浮游植物粒级结构差异较大,在整个研究海域,粒径较小的微型和微微型浮游植物对总生物量的贡献始终占主导(65%),粒径较大的小型浮游植物在冬季和春季贡献率相对较高;从季节尺度看,浮游植物的平均粒级指数从大到小的顺序为:春季的(15.47μm),冬季的(11.08μm),秋季的(8.61μm),夏季的(6.52μm);尽管不同季节水文和化学环境差异显著,但是不同粒径浮游植物的贡献率随总生物量的变化表现出一致性的规律。对环境因子与叶绿素分布的相关分析表明,浮游植物的生长在夏季主要受到营养盐来源的限制,冬季主要受到水体混合引起的光照限制,秋季可能受到磷酸盐和水体混合的共同限制。浮游植物粒级结构的分布格局主要是由各组分在不同环境中的资源竞争优势决定的。  相似文献   

7.
The seasonal variability of the surface chlorophyll “a” (Chl-s) was studied for five different hydrological areas in the Drake Passage. The data were collected both in the field (December 2001–March 2002, and November 2007) and by satellite observations. One maximum of Chl-s was registered for the area northward of the Antarctic Polar Front in November 2007. This maximum moves southwards to the Antarctic and Continental Antarctic regions in December and January, respectively. The major factors affecting the phytoplankton growth were analyzed, namely, the decrease of the mixed water layer’s depth due to jogging during the austral late spring and summer and seasonal water temperature increase. The comparison of the field and satellite data allows us to conclude that the standard OC4v4 algorithm usually underreports the Chl-s concentration when it exceed 0.2 mg m−3.  相似文献   

8.
Data collected during 7 years of seasonal surveys are used to investigate the distribution of phytoplankton biomass within the estuarine waters of the Strait of Georgia and Juan de Fuca Strait. Variability of the chlorophyll distribution is examined in relation to the density stratification, light availability and nutrient concentration. In the Strait of Georgia, both the horizontal and vertical distribution of chlorophyll are found to be linked to the presence of a near-surface layer of increased density stratification. Despite important year-to-year variability, the seasonal cycle of chlorophyll in the Strait of Georgia is dominated every year by relatively large near-surface concentrations in the spring that are linked to the seasonal increase in solar radiation onto the stratified near-surface layer. In the vertical, a sub-surface peak is observed around 10 m depth, corresponding to the depth of maximum water column stability. Nutrients within the euphotic zone are in general abundant, with the exception of the Strait of Georgia in summer where phytoplankton growth is potentially limited by low nitrate concentration near the surface. The depth of the euphotic zone is estimated along the thalweg of the estuary from transmissometer profiles. It appears to vary relatively little within the estuary from a minimum of 20 m in spring, near the mouth of the Fraser River, to an autumnal maximum of about 30 m in the northern Strait of Georgia. Finally, the estimated self-shading contribution to light attenuation is shown to be generally significant (5–10%) in the surface waters of the Strait of Georgia, during spring and summer, reaching values as high as 35% during the spring bloom.  相似文献   

9.
High-resolution (1km) satellite data from the NOAA AVHRR (Advanced Very High Resolution Radiometer) and OrbView-2 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) are used to investigate the upper layer dynamics of the southern Benguela ecosystem in more detailed space and time scales than previously undertaken. A consistent time-series of daily sea surface temperature (SST) and chlorophyll a concentration images is generated for the period July 1998–June 2003, and a quantitative analysis undertaken. The variability in SST, upwelling and phytoplankton biomass is explored for selected biogeographic regions, with particular focus on intra-seasonal time scales. The location and emergence of upwelling cells are clearly identified along the length of the southern Benguela, being distinct on the narrow inner and the mid-continental shelves. Most notable is the rapidly pulsating nature of the upwelling, with intense warm/cold events clearly distinguished. The phytoplankton response to this physical forcing is described. Chlorophyll concentration on the inner shelf largely mirrors the pattern of SST variability, similarly dominated by event-scale processes. Over the mid-shelf, higher chlorophyll is observed throughout all seasons, although low biomass occurs during winter. The variability of the offshore extent of SST and chlorophyll is identified at locations of differing shelf width. Cooler upwelled water is confined primarily to the narrow inner-shelf, with event-scale pulses extending considerable distances offshore. Agulhas Current influences are readily observed, even on the Cape Peninsula inner-shelf. Chlorophyll concentrations vary considerably between the locations of differing shelf width. SST, upwelling and phytoplankton indices are derived for selected locations to quantify the intra-seasonal variations. The SST indices show marked temperature changes associated with rapid pulsation on the event scale. No strong seasonal signal is evident. In contrast, the upwelling indices display a strong seasonal signal, with most intense upwelling occurring in spring/summer in the south. The phytoplankton response to the seasonal upwelling index differs between the selected locations. This study concludes that, although low-resolution SST and chlorophyll data may be useful for investigating general patterns over large scales, higher resolution data are necessary to identify finer scale spatial and temporal variability, especially in the inshore coastal zones.  相似文献   

10.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

11.
Biogeochemical processes in the sea are triggered in various ways by chlorophyll-containing phytoplankton groups. While the variability of chlorophyll concentration at sea has been observed from satellites for several years, these groups are known only from cruises which are limited in space and time. The Geochemistry, Phytoplankton and Color of the Ocean programme (GeP&CO) was set up to describe and understand the variability of phytoplankton composition on large spatial scales under a multi-year sampling strategy. It was based on sea-surface sampling along the route of the merchant ship Contship London which travelled four times a year from Le Havre (France) to Nouméa (New Caledonia) via New York, Panama and Auckland. Observations included the measurement of photosynthetic pigments, counts of picoplanktonic cells by flow cytometry (Prochlorococcus, Synechococcus, and picoeucaryotes) and counting and identification of coccolithophores. The results confirmed that tropical areas have low seasonal variability and are characterized by relatively high divinyl-chlorophyll a and zeaxanthin concentration and that the variability is strongest at high latitudes where the phytoplankton biomass and population structure are found to have large seasonal cycles. Thus, the spring bloom in the North Atlantic and an austral winter bloom north of New Zealand are marked by chlorophyll concentrations which are often higher than 0.5 μg l−1 and by high concentration of fucoxanthin (a pigment used as an indicator for diatoms), while summer populations are dominated by Prochlorococcus sp. and have low chlorophyll concentrations. Apart from this yearly bloom at temperate latitudes, fucoxanthin is scarce, except in the equatorial upwelling zone in the eastern Pacific Ocean, where it is found in moderate amounts. In this region, relatively high chlorophyll concentrations extend generally as far as 14°S and do not respond to the seasonal strengthening of the equatorial upwelling during the austral winter. Prochlorococcus, which is known to dominate in oligotrophic tropical seas and to disappear in cold conditions, in fact has its minimum during the spring bloom in the North Atlantic, rather than during the winter. Coccolithophores are ubiquitous, showing a succession of species in response to oceanic conditions and provinces. 19′Hexanoyloxyfucoxanthin, the pigment generally considered as an indicator of coccolithophores, is relatively abundant at all times and in all regions, but its abundance is generally not tightly correlated with that of coccolithophores. The regional differences revealed by these results are in overall agreement with Longhurst's division of the ocean into ecological provinces.  相似文献   

12.
Temperature, wave and wind data over two years off Ho Peng, Shi Ti and Jang Yuan of east Taiwan are analyzed to study their seasonal variations. A model for predicting the mixed layer thickness is developed by use of wave data. The vertical profile of temperature indicates that there are basically three layers; mixed layer, thermocline layer and deep cold layer. The surface mixed layer appears in winter and disappears in summer. While surface water is warmer in summer than in winter, water at a depth of 50 m is warmer in winter than in summer. The seasonal variation in the deep cold layer is weak. The sea surface temperature is generally higher offshore than nearshore. The surface temperature off east Taiwan is almost equal to that in Taiwan Strait in summer, but in winter it is about 4°C warmer off northeast Taiwan than in the northeast of the Taiwan Strait, if compared at the same latitude. This is an effect of the seasonal variation of the Kuroshio. A model is developed for predicting the mixed layer thickness in terms of the input wave energy. The model successfully accounts for the observed features.  相似文献   

13.
An examination of large archives (1950–1997) of the oceanographic and atmospheric data from the northwestern North Pacific Subtropical Gyre has revealed clear linkages between atmospheric forcing factors, physical processes and biological events. Large changes in the winter and spring biomass of phytoplankton and macroplankton observed over annual, decadal and inter-decadal time scales could clearly be attributed to climate-related changes in oceanographic processes. Interannual changes in the intensity of the winter-time East Asian Monsoon had a significant impact on the extent of convective overturning, on nitrate inputs into the euphotic zone and the concentrations of chlorophyll a in winter and during the following spring. A prolonged period of deeper winter mixed layers observed from the mid-1970s to the mid-1980s led to a sizeable increase in winter mixed-layer nitrate concentrations. This change resulted in a decrease in winter-time phytoplankton biomass. Spring-time chlorophyll a, in contrast, showed a steady increase during this period. The decline in winter phytoplankton biomass could be attributed to the depths of mixed layer. A deeper mixed layer prevents phytoplankton from remaining in the euphotic zone for long enough to photosynthesize and grow, leaving substantial amounts of nutrients unutilised. However, as a result of stratification of the water column in spring following each of these winters, phytoplankton could take advantage of the enhanced ambient concentrations of nutrients and increase its biomass. Another noteworthy observation for the period from the mid-1970s to the early 1980s is that the western subtropical gyre progressively became phosphate limited. The period of diminishing mixed-layer phosphate concentrations was observed in our study area from the early 1990s onwards was consistent with recent observations at Station ALOHA in the eastern subtropical gyre.  相似文献   

14.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

15.
Data collected primarily from commercial ships between 1987 and 2010 are used to provide details of seasonal, interannual and bidecadal variability in nutrient supply and removal in the surface ocean mixed layer across the subarctic Pacific. Linear trend analyses are used to look for impacts of climate change in oceanic domains (geographic regions) representing the entire subarctic ocean. Trends are mixed and weak (generally not significant) in both winter and summer despite evidence that the upper ocean is becoming more stratified. Overall, these data suggest little change in the winter resupply of the mixed layer with nutrients over the past 23 years. The few significant trends indicate a winter increase in nitrate (~0.16 μM year−1) in the Bering Sea and in waters off the British Columbia coast, and a decline in summer phosphate (0.018 μM year−1) in the Bering. An oscillation in Bering winter nutrient maxima matches the lunar nodal cycle (18.6 years) suggesting variability in tidal mixing intensity in the Aleutian Islands affects nutrient transport. Nitrate removal from the seasonal mixed layer varies between 6 μM along the subarctic–subtropical boundary and 18 μM off the north coast of Japan, with April to September new production rates in the subarctic Pacific being estimated at 2 and 6 moles C m−2. Changes in nutrient removal in the Bering and western subarctic Pacific (WSP) suggest either the summer mixed layer is thinning with little change in new production or new production is increasing which would require an increase in iron transport to these high-nutrient low-chlorophyll (HNLC) waters. Si/N and N/P removal ratios of 2.1 and 19.7 are sufficient to push waters into Si then N limitation with sufficient iron supply. Because ~3 μM winter nitrate is transferred to reduced N pools in summer, new production calculated from seasonal nutrient drawdown should not be directly equated to export production.  相似文献   

16.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

17.
The spatial and temporal variability of the chlorophyll (Chl) concentration in the surface water layer of the Black Sea in 1998–2008 has been analyzed using the data obtained by the SeaWiFS satellite sensor. In the deep-sea areas, the seasonal pattern of the Chl concentration is represented by a U-shape curve. The maximal concentrations are observed in the winter-spring and autumn periods, while the minimal, in the summertime. In the northwestern Black Sea, the maximal concentrations are registered in mostly the summer and autumn periods. Pronounced interannual variability is found for the summer concentrations of Chl observed for an 11-year period. After a cold winter, the concentration of Chl in the spring period is 3–5 times higher compared to the mild-winter years. In December–March, a negative correlation between the water temperature and the average Chl concentration is registered.  相似文献   

18.
The Newport Hydrographic (NH) Line along 44.65°N off central Oregon was sampled seasonally during two epochs: 1961-1971 through the TENOC program and 1997-2003 through the GLOBEC Northeast Pacific Long Term Observations Program (LTOP); some observations are available for 2004 and 2005. During TENOC, the line extended 305 km offshore to 128°W, with stations 18 km apart over the continental shelf and 36 km offshore. During LTOP, the line was shorter (to 126°W) with closer station spacing over the continental shelf (9 km apart) and slope (18 km apart). LTOP cruises included biochemical sampling and underway current measurements. During both TENOC and LTOP, the seasonal cycle is very strong (accounting for >50% of the variance in surface layer properties), with rapid transitions in spring and fall. The summer regime is subject to coastal upwelling driven by southward winds, equatorward surface currents, and advection of low-salinity waters from the Columbia River. The winter regime off Newport is subject to coastal downwelling and poleward surface currents driven by northeastward winds. Comparison between TENOC and LTOP summer regimes shows the near-surface layer (0-100 m) at most locations is significantly warmer and fresher during LTOP than TENOC, and steric heights over the continental margin are significantly higher. Comparison of LTOP and TENOC winters shows that average differences at most locations were not statistically significant, but that the variance of steric height and shelf-break temperatures was significantly higher during LTOP than TENOC. Interannual variability of climate indices is also stronger during LTOP, which included a rare Subarctic invasion in 2002 as well as the strong 1997-1998 El Niño. During both TENOC and LTOP, interannual variability of steric height is closely related to the El Niño/La Niña cycle. Nutrient concentrations and nitrate-to-phosphate ratios of upwelling-source waters vary inversely with halocline temperature. Both reflect alongshore advection by coastal currents: southward currents bring cool, nitrate-rich waters in summer (especially during the Subarctic invasion), and northward currents bring relatively warm, nitrate-poor waters to the NH line in winter (especially during El Niño). Seasonal and interannual variations in the nutrient level of upwelling-source water are reflected in time series of vertically-integrated chlorophyll over the LTOP survey region (about 150 km by 300 km). Seasonal variations in chlorophyll and currents are congruent with seasonal variations in copepod biomass and diversity. We were not successful in establishing a clear connection between chlorophyll levels and interannual variations in copepod biomass or diversity, nor in explaining the large decrease in the survival rate of coho salmon between TENOC (6%) and LTOP (3%).  相似文献   

19.
以深圳沿岸海域为研究区,以MODIS/AQUA卫星遥感产品为数据源,结合实测浮标数据修正了VGPM中叶绿素a含量的估算进而分析深圳沿岸海域净初级生产力的时空分布规律.研究表明:(1)深圳沿岸海域2014年2、5、8、10月的净初级生产力在空间分布上从近海向外逐渐降低,初级生产力整体呈现出"西高东低"的局面,且未有明显的季节性波动.(2)4个海区的叶绿素a含量均表现为夏季最高秋冬季次之,但各海区主要影响因素不同,珠江口主要受季风造成的浮游植物种类与细胞密度的季节变化影响,大亚湾主要受营养盐限制,大鹏湾的主导因素为湾内余流的季节变化,深圳湾的叶绿素a含量主要与浮游植物细胞密度的季节变化有关.(3)珠江口的初级生产力春夏季高于秋冬季;大鹏湾的初级生产力夏季最高,且季节变化趋势与叶绿素a表现一致;深圳湾的初级生产力夏季最高,且季节变化趋势与海表温度表现一致;大亚湾的初级生产力波动明显,夏冬季海洋初级生产力数值总体高于春秋季.  相似文献   

20.
《Marine Chemistry》2001,75(4):1149
Spatial distribution and seasonal variability of surfactant activity (SA) of seawater were studied in the northern Adriatic Sea and compared to the temperature and salinity patterns in the 2-year period from February 1998 to January 2000, based on monthly surveys. Surface-active substances (SAS) were determined with alternating current voltammetry (in-phase mode) using o-nitrophenol as an electrochemical probe. A general characteristic of the SA seasonal variability for the northern Adriatic is the sinusoidal change of SA within the period of 1 year; similar behaviour was observed for the seasonal variations of temperature. Maximum SA values appeared during the summer period, while minimum SA values were measured in winter, during the period of well-mixed water layers and lower phytoplankton production. In May and October, the highest SA values were obtained in the upper seawater layer, which was ascribed to the influence of high inflow of nutrient-rich Po River freshwater. Riverine inputs indirectly favour autochthonous production processes, which result in increased concentration of organic matter (OM), particularly surface-active substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号