首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
多不杂富金斑岩铜矿位于斑公湖-怒江缝合带北侧的铁格山岩浆弧中。具O型埃达克岩特征的闪长玢岩、花岗闪长斑岩侵位于中侏罗统雁石坪群中。岩体内及其围岩中蚀变强烈,分带明显,各种细脉、细网脉特别发育,矿化为细脉-浸染状,含矿斑岩全岩矿化,少量矿化产于围岩中,矿化为铜-金组合。发育丰富的热液磁铁矿、赤铁矿、金红石等,铜、金沉淀与热液磁铁矿的形成关系密切;矿石矿物总体上为黄铜矿>斑铜矿>黄铁矿,黄铁矿很少,矿区内还发育丰富的石膏脉,说明母岩浆是高氧化性的。流体包裹体岩相学和显微测温结果显示高温阶段气相和含子矿物包裹体普遍共存,中高温阶段液相和气相包裹体共存,暗示流体沸腾可能是主要的成矿机制,成矿流体是直接从岩浆熔体中出溶(600~900°C)的具高氧化性、(超)高盐度的富含Cu、Au、S元素的岩浆流体。成岩成矿时代为早白垩世,系古特提斯洋闭合俯冲增生阶段的产物。  相似文献   

2.
西藏甲玛斑岩成矿系统铜钼元素分离机制探讨   总被引:6,自引:2,他引:4  
西藏甲玛矿床是冈底斯成矿带中东段目前勘查程度最高、第一个规模化开发的超大型斑岩成矿系统,主要由矽卡岩铜多金属矿体、斑岩钼(铜)矿体以及角岩铜钼矿体构成。文章以甲玛矿床角岩矿体和斑岩矿体中典型的"上铜下钼"现象为切入点,借助流体包裹体显微测温、激光拉曼测试、同步辐射X射线荧光分析(SR-XRF)等研究方法,分析了甲玛矿床铜钼矿化阶段成矿流体的物化条件差异及微量元素迁移行为。流体包裹体研究结果表明:铜矿化阶段流体温度(大致在235~451℃,主要集中在340~380℃之间)总体上大于钼矿化阶段流体温度(大致在213~500℃,主要集中在310~360℃之间),但两种成矿流体的盐度大致相似,主要位于18%NaCleqv与30%NaCleqv这两个区间,缺乏盐度中间过渡区,说明成矿流体经历了沸腾作用。激光拉曼显微探针测试结果表明,Cu矿化阶段的流体氧化性较Mo矿化阶段更强,而Mo矿化阶段流体略呈还原性。单个流体包裹体同步辐射X射线荧光分析显示,Cu、Au、Fe、Mn、S、As等元素主要在气相中广泛分布,而Mo则主要残留在液相中迁移富集。因此,本文认为甲玛矿床中角岩型和斑岩型矿体呈现"上铜下钼、早铜晚钼"现象,主要由铜、钼元素本身的物化性质,含矿岩浆性质和侵位顺序与深度,以及含矿岩浆后期所分异出的成矿流体的氧化还原性以及其中S含量的差异所致。  相似文献   

3.
老挝色潘铜金矿床研究新进展   总被引:3,自引:0,他引:3  
色潘铜金矿集区是老挝镜内最大的铜金生产基地。铜金矿床的成矿作用与斑岩体密切相关,发育4种矿化类型,分别为斑岩体内部的斑岩型铜钼金矿化、斑岩体边部的类矽卡岩型铜金矿化、邻近斑岩体的碳酸盐岩交代型铅锌银矿化、远离斑岩体的沉积岩容矿型(类卡林型)金矿化。前三者成矿模式类同斑岩体系的"正岩浆模式",成矿作用与花岗闪长斑岩岩浆流体有关。沉积岩容矿型金矿化类同卡林型金矿化,但成矿热源及金属元素的来源可能与花岗闪长斑岩岩浆流体有关,大气降水混合循环作用是金沉淀的关键因素。因此,在矿集区范围内存在着成矿元素东西分带、内外分带现象,总体表现为斑岩体内部的高温矿化组合到远离中心的中低温矿化组合演化规律,即:Cu+Mo→Cu(Mo+Au+Ag)→Cu+Au(Ag)→Pb+Zn(Au+Ag)→Au+Ag。  相似文献   

4.
公婆泉铜矿位于甘肃-蒙古-北山斑岩铜矿成矿带公婆泉岛弧区,为典型的斑岩型铜矿,赋矿围岩主要为英安斑岩、花岗闪长斑岩和石英闪长玢岩。矿石矿物主要有黄铜矿和斑铜矿,其次有少量的黄铁矿、闪锌矿、方铅矿以及蓝辉铜矿等。对含矿石英脉中流体包裹体研究表明,公婆泉铜矿主要有4类流体包裹体:纯气相包裹体(Ⅰ型)、纯液相包裹体(Ⅱ型)、原生富液相气液两相包裹体(Ⅲa型)以及次生富液相气液两相包裹体(Ⅲb型)。其中与成矿密切相关的为原生富液相气液两相包裹体(Ⅲa型)。该类包裹体的均一温度集中在100~260℃,盐度在0.18%~9.98%(NaCleq),密度为0.75~1.0g/cm3;激光拉曼探针分析表明,液相成分以H2O为主,气相成分以H2、N2以及CH4为主。成矿流体具有中低温、低盐度以及低密度的流体特征。斑岩的上升侵位为矿床的形成奠定了物质基础——Cu、S。斑岩分异出成矿流体沿早期断裂系统向上运移发生减压沸腾导致相态分离,从而造成Cu发生沉淀。因此,减压沸腾可能是导致流体中金属卸载的主要原因。  相似文献   

5.
与花岗质岩石相关的成矿系统与战略新兴矿产(W、Sn、Mo、Be、Nb、Ta、Li等)和大宗紧缺战略矿产(Cu、Au)密切相关。流体包裹体作为古成矿流体的样品,直接记录了成矿流体的温度、盐度和元素含量等关键信息。目前,随着单个流体(熔体)包裹体成分分析技术的突破,已经积累了一批可靠的成矿流体中元素含量的数据。本文总结了4种典型热液矿床的流体包裹体的温度、盐度和成分数据,对与花岗质岩石相关的成矿系统的流体性质和成矿机制进行探讨。斑岩型钼矿的熔体包裹体中钼含量不高,但斑岩型铜矿的熔体或熔流体包裹体中可含有高含量的铜和金。斑岩型钼矿和斑岩型铜矿热液阶段的流体相分离和特定温度域的流体冷却(420~350℃)是重要成矿机制。花岗伟晶岩型稀有金属矿和花岗岩型钨(锡)矿普遍发育的超临界流体可能具有超强的元素溶解能力。流体混合、水岩反应和流体沸腾等多种机制导致花岗岩型钨(锡)矿金属沉淀富集。目前,尚缺乏花岗伟晶岩型稀有金属矿的系统流体演化研究。  相似文献   

6.
中甸普朗还原性斑岩型铜矿床:矿物组合与流体组成约束   总被引:11,自引:8,他引:3  
刘江涛  杨立强  吕亮 《岩石学报》2013,29(11):3914-3924
成矿流体高氧逸度是斑岩铜矿床模式的一个基本原则。虽然亚洲单个矿体储量最大的普朗铜矿床的成矿母岩——普朗复式岩体具氧化性岩浆特点,但其矿物组合及流体成分却与还原性斑岩型铜金矿床一致:矿石中以发育大量磁黄铁矿为特征,构成黄铜矿-磁黄铁矿-黄铁矿为主的矿物组合,不发育表征高氧逸度的原生磁铁矿和硫酸盐(硬石膏等)矿物;成矿流体中含较多CO2、CO和CH4等还原性组分,氧逸度低于铁橄榄石-磁铁矿-石英缓冲剂。成矿流体中还原性组分可能来源于普朗复式岩体周围的含碳质千枚岩或深部铁镁质岩浆。还原性流体中铜元素的溶解度比氧化性流体中的低,但金元素的溶解度不受氧化还原条件的影响;而CH4可使SO2还原形成S2-,为辉钼矿的形成提供物质基础;可能是导致普朗铜矿床Cu品位偏低而伴生大量Au、Mo矿化的主要原因之一。普朗铜矿床还原性特征的厘定有益于深入研究其矿床成因、乃至区域斑岩型铜矿床成矿机制。  相似文献   

7.
云南马厂箐多金属矿床地质地球化学特征及成矿机制探讨   总被引:1,自引:0,他引:1  
云南马厂箐多金属矿床是金沙江-哀牢山构造带上与喜马拉雅期富碱斑岩有关的Cu、Mo、Au 成矿的典型代表之一。矿体(脉)的产出与富碱斑岩体(脉)在空间上共存、时间上相近或稍晚、成因上密切相关, 蚀变和成矿分带明显。岩体内产出斑岩型Mo、Cu 矿化, 以Mo 矿化为主; 岩体与围岩接触带产出接触交代型Cu、Mo、Au、Fe 矿化, 以Cu、Fe 矿化为主, Au 矿化较弱; 而距接触带稍远的围岩地层中则产出Au、Pb、Zn 矿化。流体包裹体研究表明, 从马厂箐矿段→乱硐山矿段→人头箐-金厂箐矿段, 流体包裹体具有相态组合逐渐简单, 温度、盐度逐渐降低, 成矿压力逐渐减小, 成矿深度逐渐变浅的趋势。同位素地球化学研究表明, 马厂箐Cu、Mo、Au 多金属矿属于同一个岩浆和流体成矿系统在不同物理化学条件下的产物, 表现出随流体成矿作用的进行, 矿化由斑岩体内部向接触带和围岩地层推进, 富碱岩浆和地幔流体作用逐渐减弱, 而围岩地层的影响则逐渐增强, 流体性质由幔源向壳幔混合直至壳源为主演化。最后探讨了马厂箐Cu、Mo、Au 多金属矿的成矿机制, 并初步预测该矿床具有较好的深部成矿潜力。  相似文献   

8.
还原性流体与斑岩型矿床成矿机制探讨   总被引:4,自引:0,他引:4  
徐文刚  张德会 《地质学报》2012,86(3):495-502
目前已经广泛认同斑岩型Cu-Mo-Au矿床是在氧化性相对较高的含矿流体作用下形成的。但是随着研究的深入,逐渐发现了一系列具备还原性特征的斑岩型矿床,这些矿床往往不发育表征高氧逸度的原生磁铁矿和硫酸盐矿物。本文针对目前发现的与还原性I型花岗岩相关的斑岩矿床进行了综合分析,发现此类矿床的成矿流体中普遍含有CH4等还原性流体成分,并且伴生有CO2。结合相关资料分析认为还原性流体中所含有的CH4可能来自邻近的S型花岗岩的混染作用,但也不排除是经地球排气作用从地幔进入到地壳的可能性。结合典型还原性斑岩型矿床研究,给出了一个化学模型,认为CH4和SO2属于岩浆系统自生成分,在特定化学物理阶段发生反应,形成H2S和CO2,从而抑制了硫酸盐矿物的形成。反应所生成的H2S可以与Mo结合形成辉钼矿矿化,而Cu-Au由于在氧逸度较低的环境下具备更高的活性,易于富集在气相流体中,所以可以迁移到某一距斑岩系统较远的有利部位沉淀成矿,从而形成以Mo矿化为核心区,外围Cu-Au矿化的模式。  相似文献   

9.
斑岩型铜矿是世界上铜资源最主要来源。目前广泛的认为典型斑岩型铜矿是由高氧逸度、高盐度的成矿流体形成的,称为氧化性斑岩型铜矿,成矿流体属于NaCl-H_2O-CO_2体系。但随着人们不断深入研究发现,斑岩型铜矿的成矿流体也可以是具有还原性质的,如含CH_4、H_2和CO,属于H_2O-NaCl-CH_4-CO_2体系。该文分别分析了两种矿床成矿流体的性质,说明了氧化性成矿流体的来源、演化以及早期阶段磁铁矿的沉淀引起还原S的形成机制。对于还原性成矿流体,重点探讨了成矿流体中CH_4的来源,以及CH_4的存在对矿化机制的影响。  相似文献   

10.
本文从火山喷气、岩浆热液矿床的成矿流体性质、金属元素在蒸汽相中的溶解及在蒸汽/卤水相的分配实验等方面概述了有关金属元素气相迁移及CO2在成矿过程中作用的研究现状。火山喷气的凝结物中高浓度的Cu、Zn、Pb、As、Ag和Au,以及斑岩型矿床中低密度流体包裹体(蒸汽相)中硫化物矿物的存在,预示着上述金属是以蒸汽相搬运的。金属元素在蒸汽相中溶解实验研究表明,金属元素在蒸汽相中以[MeXm·(H2O)n]水合物的形式存在,其溶解度随着H2O逸度和HCl逸度的增大而增加;熔体—流体体系分配实验研究揭示,NaCl—H2O体系中存在蒸汽—卤水相分离,在含S条件下Au、As等元素通常以HS-离子络合物的形式优先溶于蒸汽相,Fe、Zn、Pb、Mn、Cs等元素以Cl-离子络合物的形式优先富集于卤水相;Cu在富S热液中优先进入蒸汽相,在富Cl贫S热液中通常富集于卤水相,表明Cu在岩浆热液中是以HS-和Cl-两种络合物的形式迁移的。CO2在Au、Cu等金属元素迁移和沉淀过程中可能起重要的作用,不仅促进NaCl—H2O体系相分离,并且促使HS-络合物在蒸汽相富集以及调节成矿流体的酸碱度。斑岩型Cu—Au矿床的矿化过程可概括为3个阶段:高侵位的斑岩分异出的少量岩浆流体主要形成了青磐岩化带和部分钾硅化带,矿化通常不成规模;深部岩浆房早阶段去气作用分异出的岩浆流体主要在斑岩体早期钾化基础上叠加蚀变并形成广泛的浸染状矿化和石英—硫化物细脉,在斑岩体上部形成高级泥化带并形成低温热液型Cu—Au矿化,此阶段为主矿化期;深部岩浆房晚阶段去气作用形成的岩浆流体可能主要使斑岩体和部分围岩形成绢英岩化,并伴随晚期石英—(方解石)—硫化物脉的沉淀。  相似文献   

11.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   

12.
Hydrothermal alteration and mineralization at the Wunugetu porphyry Cu–Mo deposit, China, include four stages, i.e., the early stage characterized by quartz, K-feldspar and minor mineralization, followed by a molybdenum mineralization stage associated with potassic alteration, copper mineralization associated with sericitization, and the last Pb–Zn mineralization stage associated with carbonation. Hydrothermal quartz contains three types of fluid inclusions, namely aqueous (W-type), daughter mineral-bearing (S-type) and CO2-rich (C-type) inclusion, with the latter two types absent in the late stage. Fluid inclusions in the early stage display homogenization temperatures above 510°C, with salinities up to 75.8 wt.% NaCl equivalent. The presence of S-type inclusions containing anhydrite and hematite daughter minerals and C-type inclusions indicates an oxidizing, CO2-bearing environment. Fluid inclusions in the Mo- and Cu-mineralization stages yield homogenization temperatures of 342–508°C and 241–336°C, and salinities of 8.6–49.4 and 6.3–35.7 wt.% NaCl equivalent, respectively. The presence of chalcopyrite instead of hematite and anhydrite daughter minerals in S-type inclusions indicates a decreasing of oxygen fugacity. In the late stage, fluid inclusions yield homogenization temperatures of 115–234°C and salinities lower than 12.4 wt.% NaCl equivalent. It is concluded that the early stage fluids were CO2 bearing, magmatic in origin, and characterized by high temperature, high salinity, and high oxygen fugacity. Phase separation occurred during the Mo- and Cu-mineralization stages, resulting in CO2 release, oxygen fugacity decrease and rapid precipitation of sulfides. The late-stage fluids were meteoric in origin and characterized by low temperature, low salinity, and CO2 poor.  相似文献   

13.
本文从江西德兴斑岩铜矿铜厂矿床的流体包裹体研究出发,讨论了矿床成矿物质来源与矿床成因。矿床中流体包裹体分为6类,即富液包裹体、富气包裹体、含石盐多相包裹体、含CO2多相包裹体以及熔体包裹体和熔体-流体包裹体。富气包裹体、含石盐多相包裹体和熔体与熔体-流体包裹体代表了成矿早期岩浆热液的特征。在这些包裹体中发现黄铜矿等金属矿物,表明成矿金属主要源自岩浆。含石盐多相包裹体和富气包裹体与矿体关系不甚密切,但其中所含有的金属矿物特别是黄铜矿,暗示早期来自岩浆的热液流体金属含量较高,形成于大气降水与岩浆热液混合之前。成矿中晚期大气降水流体在冷却和稀释岩浆流体方面对于矿床的形成作出了一定贡献,但是来自围岩的大气降水可能并没有向成矿体系提供大量金属。  相似文献   

14.
The Miocene Qulong porphyry Cu‐Mo deposit, which is located at the Gangdese orogenic belt of Southern Tibet, is the largest porphyry‐type deposit in China, with confirmed Cu ~10 Mt and Mo ~0.5 Mt. It is spatially and temporally associated with multiphase granitic intrusions, which is accompanied by large‐scale hydrothermal alteration and mineralization zones, including abundant hydrothermal anhydrite. In addition to hydrothermal anhydrite, magmatic anhydrite is present as inclusions in plagioclase, interstitial minerals between plagioclase and quartz, and phenocrysts in unaltered granodiorite porphyry, usually in association with clusters of sulfur‐rich apatite in the Qulong deposit. These observations indicate that the Qulong magma‐hydrothermal system was highly oxidized and sulfur‐rich. Three main types of fluid inclusions are observed in the quartz phenocrysts and veins in the porphyry: (i) liquid‐rich; (ii) polyphase high‐salinity; and (iii) vapor‐rich inclusions. Homogenization temperatures and salinities of all type inclusions decrease from the quartz phenocrysts in the porphyry to hydrothermal veins (A, B, D veins). Microthermometric study suggests copper‐bearing sulfides precipitated at about 320–400°C in A and B veins. Fluid boiling is assumed for the early stage of mineralization, and these fluids may have been trapped at about 35–60 Mpa at 460–510°C and 28–42 Mpa at 400–450°C, corresponding to trapping depths of 1.4–2.4 km and 1.1–1.7 km, respectively.  相似文献   

15.
大兴安岭岔路口斑岩钼矿床流体成分及成矿意义   总被引:1,自引:0,他引:1       下载免费PDF全文
岔路口超大型斑岩型钼矿床位于大兴安岭北段,以网脉状和角砾岩型矿化为主.该矿床经历了4个成矿阶段:Ⅰ.石英-钾长石;Ⅱ.石英-辉钼矿;Ⅲ.石英-多金属硫化物;Ⅳ.石英-萤石-方解石.包裹体的岩相学及激光拉曼研究揭示,石英斑晶内的熔体-流体包裹体中熔体成分有更长石和钠长石,为岩浆出溶作用形成;子矿物多相包裹体(S型)中含有钾盐、石盐、赤铁矿和石膏等子矿物,显示出成矿流体为高氧逸度.第Ⅰ成矿阶段包裹体有气液两相(L+V型)、富CO2三相(C型)和含石盐、钾盐、赤铁矿及硬石膏等子矿物的多相(S型)等类型,第Ⅱ成矿阶段除了有L+V型、C型以及含钾盐、石盐、黄铜矿和辉钼矿等子矿物多相(S型)外,还可以见到S型包裹体与气相包裹体(V型)共存;第Ⅲ成矿阶段以L+V型和含方解石的S型包裹体为主;第Ⅳ成矿阶段除见到L+V型包裹体外,还可以见到液相包裹体(L型).显微测温结果显示从早到晚,流体包裹体均一温度从530 ℃变为120 ℃、盐度从66.7% NaCl equiv变为1.2% NaCl equiv,呈现逐渐降低的趋势.群体包裹体成分显示各阶段均含有气相CO2,液相成分中Na+,K+,Ca2+,SO42-,Cl-含量很高,而F-含量极少.成矿流体总体属于富含CO2的高盐度、高氧逸度的NaCl-H2O-CO2体系,在流体演化过程中温度、氧逸度、盐度和CO2含量逐渐降低.温度、盐度、CO2含量逐渐降低及绢云母化影响了矿石沉淀.   相似文献   

16.
《地学前缘(英文版)》2020,11(4):1145-1161
The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing'an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H_2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean.  相似文献   

17.
中国还原性斑岩矿床研究进展及判别标志   总被引:1,自引:1,他引:0  
申萍  潘鸿迪 《岩石学报》2020,36(4):967-994
世界上大多数斑岩矿床的成矿流体为氧化流体(CO_2 CH_4)。然而,Rowins(2000)提出一些斑岩Cu-Au矿床的成矿流体为富含CH_4的还原流体,矿床缺乏磁铁矿、赤铁矿和硬石膏等表征高氧逸度的矿物,而发育大量的磁黄铁矿,矿床规模小,矿床形成与含钛铁矿的还原性的Ⅰ型花岗岩类有关,并将其称之为还原性斑岩Cu-Au矿床。我国学者研究发现,中国不但发育还原性斑岩铜矿床,还发育还原性斑岩-矽卡岩铜矿床和还原性斑岩钼矿床,我们建议将这三种矿床统称为还原性斑岩矿床。本文基于课题组近十年来的研究工作,并结合前人的研究成果,综合分析了中国发育的大中型还原性斑岩矿床的典型实例,在此基础上,重点阐明中国大型还原性斑岩矿床的特点、流体中CH_4来源及其有关的成矿作用、容矿围岩特点、成矿岩浆氧化还原状态及其成因、矿床形成的构造背景等。与Rowins(2000)提出的还原性斑岩铜矿床规模小的特点不同,中国发育的一些还原性斑岩矿床规模大;我们研究还识别出该类矿床发育独特的热液矿物和矿石矿物,比如,还原性斑岩铜矿发育热液钛铁矿,矿石矿物以黄铜矿为主,罕见斑铜矿、辉铜矿等矿物;还原性斑岩钼矿床出现热液钛铁矿,矿石矿物以辉钼矿为主,罕见黑钨矿和锡石等矿物;还原性斑岩-矽卡岩铜矿床的矽卡岩期发育钙铝榴石、钙铁辉石等还原性矽卡岩矿物和大量的磁黄铁矿,热液期以发育黄铜矿而非斑铜矿和辉铜矿等矿石矿物为特征。因此,还原性斑岩矿床除了Rowins(2000)提出的发育富CH_4还原流体和磁黄铁矿等识别标志之外,还可辅以独特的脉石矿物(如钛铁矿、钙铝榴石、钙铁辉石等)和简单的矿石矿物(如黄铜矿、辉钼矿等)这两个标志进行识别。中国还原性斑岩矿床含矿岩体的围岩中普遍发育还原性岩石(如含碳质沉积岩或火山沉积岩、含亚铁的火山岩或火山沉积岩等);对于成矿流体中CH_4、C_2H_6等还原性气体的来源,多数学者认为CH_4、C_2H_6等还原性气体主要源于还原性围岩,部分源于岩浆。关于还原性斑岩矿床的成矿岩体是否为含钛铁矿的、还原性的花岗岩类,目前研究较少且存在争议,多数学者认为成矿原始岩浆为氧化性岩浆,但其氧逸度偏低,少数学者认为成矿岩浆始终为还原岩浆。还原性斑岩矿床与经典的斑岩矿床的成矿构造背景类似,二者没有明显区别。还原性斑岩矿床显示的还原性热液蚀变和成矿特点均与成矿流体富含CH_4还原气体密切相关,因此,富含CH_4还原流体是还原性斑岩矿床形成的关键。  相似文献   

18.
The Eastern Qinling, Central China, containing more than 20 Mesozoic porphyry ± skarn systems, is the most important Mo province in the world. The Shangfanggou giant Mo deposit, Luanchuan County, Henan Province, is a porphyry-skarn system hosted in a lithologic association comprising carbonaceous sandstone, shale, carbonate and chert within the Neoproterozoic Luanchuan Group. Mo ores are mainly altered porphyry, skarn and hornfels, with minor altered gabbro. The mineralization process includes four stages, potassic alteration of the porphyry and skarnization of dolomite marble in stage 1, stockworks of quartz + molybdenite ± sulfide (stage 2), pyrite + quartz ± sulfides (stage 3), and carbonate ± quartz ± fluorite (stage 4), respectively. Mo mineralization was generally associated with strong silicification and/or phyllic alteration. The fluid inclusions in minerals include three compositional types, i.e., CO2-bearing (C-type), aqueous (W-type) and daughter mineral-bearing (S-type). Minerals formed in stages 1 to 3 contain all the three types of FIs, but the stage 4 minerals only contain the W-type FIs. Oxides and Cu-phosphate are recognized as daughter minerals in S-type inclusions in minerals of stage 1, whereas the daughter sulfide and reducing gases such as CO, CH4, H2S and C2H6 can be observed in quartz of stages 2 and 3, suggesting that the ore-forming fluids were initially oxidizing and then evolved to reducing. Boiling fluid inclusion assemblages can be observed in minerals formed in stage 2 or earlier, but not in stage 3 or later. Fluid boiling caused CO2 escape, oxygen fugacity decrease and rapid precipitation of ore minerals, and was a key factor causing Mo-mineralization at Shangfanggou. Data and interpretations presented in this contribution show that the fluids forming the Shangfanggou Mo deposit evolved from CO2-rich, high-salinity hypothermal, to CO2-poor, low-salinity epithermal (low-T). The Mo mineralization at the Shangfanggou deposit mainly occurred at depth of 6.6–7.0 km, deeper than the majority of porphyry systems in volcanic arcs, which resulted from a CO2-rich magma–fluid system originating from partial melting of thickened lower crust. The Shangfanggou mineral system developed during 158–134 Ma when the Yangtze–North China continental collision began to evolve from compression to extension. Magmatic hydrothermal deposits developed in a continental collision regime are generally formed by CO2-rich, high-salinity fluids.  相似文献   

19.

The Naozhi Au–Cu deposit is located on the continental margin of Northeast China, forming part of the West Pacific porphyry–epithermal gold–copper metallogenic belt. In this paper, we systematically analyzed the compositions, homogenization temperatures, and salinity of fluid inclusions as well as their noble gas isotopic and Pb isotopic compositions from the deposit. These new data show that (1) five types of fluid inclusions were identified as pure gas inclusions (V-type), pure liquid inclusions (L-type), gas–liquid two-phase inclusions (W-type, as the main fluid inclusions (FIs)), CO2-bearing inclusions (C-type), and daughter-mineral-bearing polyphase inclusions (S-type); (2) W-type FIs in quartz crystals of early, main, and late stage are homogenized at temperatures of 324.7–406.7, 230–338.8, and 154.6–308 °C, with salinities of 2.40–7.01 wt% NaCleq, 1.73–9.47 wt% NaCleq, and 6.29 wt% NaCleq, respectively. S-type FIs in quartz crystals of early stage are homogenized at temperatures of 328.6–400 °C, with salinities of 39.96–46.00 wt% NaCleq; (3) Raman analysis results reveal that the vapor compositions of early ore-forming fluids consisted of CO2 and H2O, with H2O gradually increasing and CO2 being absent at the late mineralization stage; (4) fluid inclusions in pyrite and chalcopyrite have 3He/4He ratios of 0.03–0.104 Ra, 20Ne/22Ne ratios of 9.817–9.960, and 40Ar/36Ar ratios of 324–349. These results indicate that the percentage of radiogenic 40Ar* in fluid inclusions varies from 8.8 to 15.5 %, containing 84.5–91.2 % atmospheric 40Ar; (5) the 206Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of sulfides are 18.1822–18.3979, 15.5215–15.5998, and 38.1313–38.3786, respectively. These data combined with stable isotope data and the chronology of diagenesis and metallogenesis enable us suppose that the ore-forming fluids originated from the melting of the lower crust, caused by the subduction of an oceanic slab, whereas the mineralized fluids were exsolved from the late crystallization stage and subsequently contaminated by crustal materials/fluids during ascent, including meteoric water, and the mineral precipitation occurred at a shallow crustal level.

  相似文献   

20.
卓玛矿床位于云南香格里拉格咱弧东北部,属斑岩-热液脉型铜多金属矿床。矿体主要赋存于矿区石英二长斑岩内及附近,严格受NW向断裂控制。卓玛矿床的形成经历了黄铁矿-石英(Ⅰ)、黄铁矿±黄铜矿--石英(Ⅱ)、黄铁矿±黄铜矿±方铅矿±闪锌矿-石英(Ⅲ)及贫硫化物-石英-碳酸盐(Ⅳ)四个成矿阶段。通过对各成矿阶段研究样品石英颗粒中的原生流体包裹体进行岩相学、显微测温学及激光拉曼光谱研究,探讨卓玛铜多金属矿床成矿流体特征,结果表明:Ⅰ阶段石英中主要发育富CO_2及气液两相型包裹体;Ⅱ阶段石英中主要发育碳质、富CO_2、含CO_2及气液两相4种类型包裹体;Ⅲ阶段石英中主要发育含CO_2及气液两相型包裹体;Ⅳ阶段石英中主要发育富CO_2、含CO_2及气液两相3种类型包裹体。激光拉曼光谱显示碳质包裹体主要成分为CO_2和CH_4,而CO_2包裹体中除CO_2和CH_4气相成分外,还有部分H_2O。因此,综合研究结果显示卓玛铜多金属矿床成矿流体为中温、低盐度的CO_2--CH_4-Na Cl--H_2O体系热液。成矿过程中,流体温度和盐度数值略有降低趋势,成矿流体的不混溶作用是导致成矿物质大量卸载的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号