首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过野外地质、光学显微镜以及背散射(BSE)电子图像的观察,南泥湖—三道庄钼(钨)矿床中矽卡岩的形成过程为:第一期流体首先与靠近岩体的大理岩发生反应生成硅灰石、钙铁榴石、钙铝榴石、钙铁辉石和透辉石,当流体继续向外运移遇到灰岩时,直接将其交代形成透辉石矽卡岩或曲卷纹层状透辉石矽卡岩;第二期流体则沿裂隙向围岩中呈面型分布,叠加交代第一期矽卡岩化过程。据此,石榴子石和辉石可以划分为两个世代,第一世代石榴子石(Gro_(3-82)And_(15-96))呈斑点状,第一世代辉石(Di_(18-86)Hd_(13-70)Jo_(0-13))可与斑点状石榴子石共生,也可与斜长石(Ab_(55-70)An_(30-44))共生;第二世代石榴子石(Gro_(23-58)And_(37-74))呈面型分布,第二世代辉石(Di_(0-68)Hd_(28-84)Jo_(3-16))沿裂隙呈面型向围岩中展布。第一世代石榴子石和辉石在空间上分布范围较第二世代广。钼钨矿化在矽卡岩的最早阶段即已开始,贯穿整个矽卡岩的形成过程,引起钼钨沉淀的原因可能是具有较高钼钨含量的流体与围岩发生反应时引起的局部还原性环境。  相似文献   

2.
The Phu Lon skarn Cu–Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals.Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6–468.5 °C; 17.4–23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9–399.8 °C; 0.5–8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (?2.6 to ?1.1 δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu–Au skarn based on the mineralogy and fluid inclusion characteristics.  相似文献   

3.
Skarns are developed over two temperature‐time intervals in calcite limestone adjacent to the southern extension of the Glenrock Granodiorite, a pluton of the Marulan Batholith, Southern Highlands, New South Wales. The initial volumetrically‐dominant prograde phase of skarn formation produced a suite comprising bimetasomatic skarn, including pyroxene endoskarn, potassic endoskarn and wollastonite‐bearing exoskarn, together with mineralogically‐zoned vein skarn, massive garnet‐pyroxene skarn and calcite‐vesuvianite skarn. Retrograde replacement is manifested by the development of hydrous silicate minerals, carbonate and cross‐cutting sulphide veinlets.

A genetic model is proposed to account for the development of bimetasomatic skarn in the deposit. Exoskarn geochemistry indicates addition of many components relative to an essentially pure limestone precursor, including Si, Al, Fe, Zr, Zn, S, Mn and Cu, negligible transfer of K, Na and Rb and loss of CO2. Strontium and Ca loss from the parent limestone is indicated by mass balance calculations at constant volume.

Garnet and pyroxene compositions in the massive garnet‐pyroxene skarn range from Gr30 to Gr66 and Hd61 to Hd87, respectively. Compositions from Gr67 to Gr95 are typical of the vein skarn garnets. Chemical zonation patterns in garnet, pyroxene and vesuvianite are generally characterized by rim Fe depletion relative to cores of grains.

Prograde skarn probably formed at T = 500–580°C; P < 220 MPa. The massive garnet‐pyroxene skarn evolved under conditions of log fO2 = ‐18.9 to ‐22.9 (assuming a constant fCO2 of 20 MPa) within the fS2 stability field of pyrrhotite. Retrograde skarn formed at T < 400°C, possibly under conditions of XH2O < 0.01.

Vesuvianite plus wollastonite assemblages, present in exoskarn, probably attest to very water‐rich conditions. The marble wall rocks, isolated from the source of skarn‐forming fluids, probably evolved under conditions of minimum Xco2 >0.2. Low temperature CO2 ‐rich fluid inclusions and prehnite (stable at Xco2 <0.01), present in the marble and skarn, respectively, suggest that substantial differences in Xco2: XH2O were maintained during cooling.

Observed mineralogical and chemical zonation within the skarn reflects the complex interaction of T, P, fO2, Xco2 and other chemical variables such as aSiO2 and aAl2O3 throughout the skarn system. No single variable can account adequately for the mineralogical diversity observed in the skarn deposit.  相似文献   

4.
青海尕林格铁矿床矽卡岩矿物学及蚀变分带   总被引:6,自引:2,他引:4  
尕林格矽卡岩型铁多金属矿床位于青海省西部祁曼塔格成矿亚带的中部.矿体处于花岗闪长岩与滩间山群白云质大理岩接触带内以及外接触带沿NWW向断裂构造破碎带分布的大理岩和蚀变安山岩内.从侵入接触带往东,蚀变岩石分带性明显,主要划分出3种含矿矽卡岩带:含Fe的镁质矽卡岩带,含Fe、Cu的钙质矽卡岩带,含Fe、Pb、Zn的锰-钙质矽卡岩带.镁质矽卡岩带的矽卡岩矿物主要包括镁橄榄石及其蚀变矿物蛇纹石、粒硅镁石、透辉石、斜绿泥石,有关的金属矿物主要为磁铁矿.钙质矽卡岩带的主要矽卡岩矿物有绿钙闪石、铁阳起石、钙铁辉石、铁叶绿泥石、磷灰石、中长石,有关的金属矿物为磁铁矿、磁黄铁矿和少量黄铜矿.与锰-钙质矽卡岩有关的矽卡岩矿物有锰钙铁辉石、钙铁榴石、钙铝榴石、铁镁绿泥石、绿帘石、硅灰石、磷灰石、钙长石等,金属矿物有方铅矿、闪锌矿、磁铁矿和磁黄铁矿.通过对矿物组合的研究,确定了不同矿物组合的生成关系,划分了成矿期次,分为矽卡岩期、退化蚀变期和金属硫化物期,矽卡岩期又分为早、晚2个阶段.矽卡岩早期生成的石榴子石的化学成分端员以钙铝榴石(Gro67~ 99)为主,辉石的成分端员以透辉石(Di96~ 98)为主;矽卡岩期晚期阶段石榴子石的化学成分端员以钙铁榴石(Ad78~98)为主,辉石的成分端员以钙铁辉石(Hd68~ 84)为主.与中国东部矽卡岩型矿床进行对比后发现,锰-钙质矽卡岩带是一种向锰质矽卡岩带过渡的类型,对于寻找与锰质矽卡岩有关的矿化类型具有指示意义.  相似文献   

5.
The Haobugao Zn–Fe deposit is a typical skarn deposit located in the southern part of the Great Xing’an Range that hosts polymetallic mineralization over a large region. The main ore minerals at the deposit include sphalerite, magnetite, galena, chalcopyrite and pyrite, and the main gangue minerals include andradite, grossular garnet, hedenbergite, diopside, ilvaite, calcite and quartz. There are broadly two mineralizing periods represented by the relatively older skarn and younger quartz–sulfide veins. In detail, there are five metallogenic stages consisting of an early skarn, late skarn, oxide, early quartz–sulfide, and late quartz–sulfide–calcite stages. Electron microprobe analyses show that the garnet at the deposit varies in composition from And97.95Gro0.41Pyr1.64 to And30.69Gro66.69Pyr2.63, and pyroxene is compositionally in the diopside–hedenbergite range (i.e. Di90.63Hd8.00Jo1.37–Hd88.98Di4.53Jo6.49). Petrographic observations and electron microprobe analyses indicate that the sphalerite has three generations ([Zn0.93Fe0.08]S–[Zn0.75Fe0.24]S). The Zn associated with the first generation sphalerite replaced Cu and Fe of early xenomorphic granular chalcopyrite (i.e. [Cu1.01Fe1.03]S2–[Cu0.99Fe0.99]S2), and part of the first generation sphalerite is coeval with late chalcopyrite (i.e. [Cu0.96Fe0.99Zn0.03]S2–[Cu1.00Fe1.03Zn0.01]S2). Magnetite has a noticeable negative Ce anomaly (δCe = ∼0.17 to 0.54), which might be a result of the oxidized ore-fluid. Thirty δ34SV-PDB analyses of sulfides from the ore range from −2.3 to −0.1‰ in value, which are indicative of a magmatic source. The δ13C‰ and δ18O‰ values for calcite from the ore formed at quartz–sulfide–calcite stage vary from −9.9 to −5.5‰ and from −4.2 to 1.1‰, respectively, contrasting with δ13C‰ (2.9–4.8‰) and δ18O‰ (9.8–13.9‰) values for calcite from marble. It is suggested that the ore-forming fluid associated with late stage of mineralization was predominantly magmatic in origin with some input of local meteoric water.Molybdenite from the Haobugao deposit defines an isochron age of 142 ± 1 Ma, which is interpreted as the mineralization age being synchronous, within error, with the zircon U–Pb ages of 140 ± 1, 141 ± 2, and 141 ± 1 Ma for granite at the deposit. These data and characteristics of lithology and mineralization further show that the Zn–Fe mineralization is temporally and spatially related to the emplacement of granite in an extensional tectonic setting during the Mesozoic.  相似文献   

6.
The Pahnavar calcic Fe-bearing skarn zone is located in the Eastern Azarbaijan (NW Iran). This skarn zone occurs along the contact between Upper Cretaceous impure carbonates and an Oligocene granodioritic batholith. The skarnification process can be categorized into two discrete stages: prograde and retrograde. The prograde stage began immediately after the initial emplacement of the granodioritic magma into the enclosing impure carbonate rocks. The effect of heat flow from the batholith caused the enclosing rocks to become isochemically marmorized in the pure limestone layers and bimetasomatized (skarnoids) in the impure clay-rich carbonates. Segregation and evolution of an aqueous phase from the magma that infiltrated to the marbles and skarnoids through fractures and micro-fractures took place during the emplacement of magma. The influx of Fe, Si and Mg from the granodiorite to the skarnoids and marbles led to the crystallization of anhydrous calc-silicates (garnet and pyroxene). The retrograde stage can be divided, in turn, into two distinct sub-stages. During earliest sub-stage, the previously formed skarn assemblages were affected by intense hydro-fracturing; in addition, Cu, Pb, Zn, along with H2S and CO2 were added. Consequently, hydrous calc-silicates (epidote and tremolite-actinolite), sulfides (pyrite, chalcopyrite, galena and sphalerite), oxides (magnetite and hematite) and carbonates (calcite) deposited the anhydrous calc-silicates. The late-retrograde sub-stage was due the incursion of colder oxidizing fluids into the skarn system, causing the alteration of the previously formed calc-silicate assemblages and the development of fine-grained aggregates of chlorite, illite, kaolinite, hematite and calcite. The lack of wollastonite in the mineral assemblage, along with the garnet-clinopyroxene paragenesis, suggests that the prograde stage formed under temperature and fO2 conditions of 430?C550°C and 10?26?C10?23, respectively.  相似文献   

7.
The Shwe Min Bon Cu–Au skarn deposit lies within one of the largest Au–Cu belts in Myanmar. The deposit is situated along the Shan scarp zone, which marks the boundary between the Myanmar central basin to the west and the Shan plateau to the east. The Shwe Min Bon deposit comprises skarn‐type metasomatic alteration, and the Cu–Au mineralization occurs along the contact face between the Nwabangyi Dolomite and Shweminbon Formation and the Cretaceous dioritic rocks. The metasomatic process resulted in pro‐ and retrograde mineral assemblages in exoskarn. Hydrothermal activities in the Shwe Min Bon deposit are classified into prograde, retrograde stage I, and retrograde stage II. The prograde skarn is classified into a proximal garnet skarn with minor clinopyroxene and a distal wollastonite skarn. Chlorite, epidote, and tremolite–actinolite were formed during the retrograde stage I. Cu–Au mineralization mainly occurred in retrograde stage I, which was characterized by moderate temperatures (260–320 °C) and fluid with a moderate salinity (5.0–6.0% NaCl equiv.). Low temperature (180–200 °C) and low salinity (2.0–3.0% NaCl equiv.) were responsible for retrograde stage II. Au mineralization is mainly associated with chalcopyrite and tennantite in retrograde stage I and with tellurobismuthite in retrograde stage II.  相似文献   

8.
The Francisco I. Madero deposit, central Mexico, occurs in the Mesozoic Guerrero Terrane, which hosts many ore deposits, both Cretaceous (volcanogenic massive sulfides) and Tertiary (epithermal and skarn deposits). It is hosted by a 600 m-thick calcareous-pelitic unit, of Lower Cretaceous age, crosscut by porphyritic dikes that strike NW–SE. A thick felsic volcanic Tertiary sequence, consisting of andesites and rhyolitic ignimbrites, unconformably overlies the Cretaceous series. At the base, the mineralization consists of several mantos developed within calcareous beds. They are dominantly composed of sphalerite, pyrrhotite and pyrite with minor chalcopyrite, arsenopyrite and galena. At the top of the orebody, there are calcic skarns formed through prograde and retrograde stages. The resulting mineral assemblages are rich in manganoan hedenbergite (Hd75–28Di40–4Jh40–20), andraditic garnets (Adr100–62Grs38–0), epidote (Ep95–36Czo60–5Pie8–0), chamosite, calcite and quartz. The temperature of ore deposition, estimated by chlorite and arsenopyrite geothermometry, ranges from 243° to 277 °C and from 300° to 340 °C, respectively. The pressure estimated from sphalerite geobarometry averages 2.1 kbar. This value corresponds to a moderately deep skarn and agrees with the high Cu content of the deposit. Paragenesis, PT conditions and geological characteristics are compatible with a distal, dike-related, Zn skarn deposit. Its style of mineralization is similar to that of many high-temperature carbonate replacement skarn deposits in the Southern Cordillera.  相似文献   

9.
西藏浦桑果铅锌多金属矿床位于南冈底斯成矿带火山岩浆弧内,矿区矽卡岩型铅锌矿体主要呈似层状和透镜状近东西向赋存于白垩系塔克那组第4岩性段矽卡岩化大理岩中,矽卡岩矿物较发育。为进一步查明矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩的形成环境及其与成矿的关系,在对矽卡岩矿物系统的显微镜下鉴定基础上,利用电子探针对矿区内主要矽卡岩矿物化学成分进行了系统分析。结果表明,石榴子石主要为非连续的钙铁榴石钙铝榴石类质同像系列(And47.39~98.17Gro0.59~50.22Ura+Pyr+Spe0~3.53),且早期主要形成钙铁榴石,部分钙铁榴石含锰质较高;单斜辉石主要为钙铁辉石-锰钙辉石-透辉石类质同像系列(Hd37.91~74.16Jo0.91~61.66Di0.43~46.07);似辉石主要为硅灰石,端员组分为Wo99.09~99.26En0.50~0.56Fs0.13~0.24;角闪石主要为镁角闪石,具钙质角闪石属性;绿帘石贫铁、镁而富铝、钙;绿泥石属于密绿泥石类。矿床矽卡岩矿物组合特征表明,浦桑果矿床矽卡岩兼具钙质矽卡岩和锰质矽卡岩的特征。早期矽卡岩形成于高温、偏碱性、强氧化的开放体系中,成矿流体具有较高氧逸度。锰质矽卡岩矿物特征及独立银矿物的存在综合表明矿区具有银矿找矿潜力,为下步找矿工作提供了思路和方向。  相似文献   

10.
The Tongshan skarn-type copper deposit is located in the Anqing–Guichi ore cluster of the iron–copper metallogenic belt which occurs along the Middle–Lower Yangtze River Valley, China. In the study area, skarnization and mineralization took place along the contact zone between carbonates and granodiorite porphyries. The contact zone shows significant horizontal and vertical variations in alteration and mineralization. In the horizontal direction, the garnet content is high in the skarns near the intrusive body (proximal skarns), the diopside content is high farther from the intrusive body (distal skarns), and hedenbergite is concentrated in the skarns adjacent to the marble zone. Limestones located far from the marble zone experienced a strong silicification. In the vertical direction (from higher to lower levels), the rocks change from hornfels to calcareous skarn to magnesian skarn. Mineralogical studies show that the skarns near the intrusion are relatively oxidized, and the garnet in the skarns is relatively andradite rich. High concentrations of Cu are found in the porphyries with quartz veins, as well as in the calcic skarns, magnesian skarns, hornfelses, and marbles, which are located at distances of 13, 10, 43 and 25 m from the porphyries, respectively. High concentrations of Zn are found in silicified limestones and skarns located even farther from the porphyries. The present findings suggest that the Tongshan deposit was subjected to prograde alteration and mineralization, followed by retrogression. The alteration can be divided into a sequence of stages: contact metamorphism, prograde metasomatism, early retrogression, and late retrogression. The copper mineralization occurred mainly during the early retrogression, and the copper was further enriched in quartz veins within the porphyries during the late stages of magma evolution.  相似文献   

11.
The newly discovered Handagai skarn Fe–Cu deposit is located in the northern Great Xing'an Range of NE China and is hosted by the Ordovician Luohe Formation. The orebodies that form the deposit are generally concordant with the bedding within these sediments, and are spatially related to areas of skarn development. The Fe–Cu mineralization in this area records four stages of paragenesis, namely prograde skarn, retrograde skarn, quartz–sulfide, and quartz–carbonate stages. The Handagai deposit is a calcic skarn that is dominated by an andradite–diopside–epidote–actinolite assemblage. The mineralogy and geochemistry of the skarn indicate that it formed from a hydrothermal fluid that altered the carbonate units in this area to a garnet (And42–95Grs4–53) and pyroxene (Di71–78Hd22–29Jo0–2) bearing skarn. The epidote within the skarn has an epidote end-member composition, with the chlorite in the skarn dominantly Fe-rich, indicating that these minerals formed in an Fe-rich environment. The petrographic, microthermometric, and Raman spectroscopic analysis of fluid inclusions within garnet, epidote, actinolite, quartz, and calcite precipitated at different stages of formation of the Handagai deposit indicate that mineralization-related fluid inclusions are either liquid-rich two-phase H2O–NaCl (type I), gas-rich two-phase H2O–NaCl (type II), three-phase (liquid + vapor + solid) H2O–NaCl (type III), or CO2–H2O–NaCl inclusions (type IV). The early stages of mineralization are associated with all four types of inclusion, whereas the later stages of mineralization are only associated with type I and II inclusions. Inclusion homogenization temperatures vary between the four stages of mineralization (370 °C–530 °C and > 600 °C, 210 °C–290 °C, 190 °C–270 °C, and 150 °C–230 °C, from early to late, respectively), with salinities also varying between the earlier and later stages of mineralization (11–18 and > 45, 7–15, 6–9, and 3–7 wt.% NaCl equivalent (equiv.), respectively). The majority of the inclusions within the Handagai deposit have homogenization temperatures and salinities of 200 °C–350 °C and 4–14 wt.% NaCl equiv., respectively, indicating that this is a medium–high temperature and medium–low salinity type deposit. The fluid inclusions were trapped at pressures of 11 to 72 MPa, corresponding to depths of 0.4 to 2.9 km. The geology, mineralogy, geochemistry, and fluid inclusions microthermometry indicate that the Handagai deposit formed as a result of contact infiltration metasomatism, with the deposition of ore minerals resulting from a combination of factors that include boiling as a result of reduced pressure, cooling, and fluid mixing.  相似文献   

12.
A calcic copper-bearing skarn zone in East-Azarbaidjan, NW of Iran is located to the east of the Sungun-Chay river. Skarn-type metasomatic alteration and mineralization occurs along the contact between Upper Cretaceous impure carbonates and an Oligo-Miocene Cu-bearing granitoid stock. Both endoskarn and exoskarn are developed along the contact. Exoskarn is the principal skarn zone enclosed by a marmorized and skarnoid–hornfelsic zone. The skarnification process occurred two stages: (1) prograde and (2) retrograde. The prograde stage is temporally and spatially divided into two sub-stages: (a) metamorphic–bimetasomatic (sub-stage I) and (b) prograde metasomatic (sub-stage II). Sub-stage I began immediately after the intrusion of the pluton into the enclosing impure carbonates. Sub-stage II commenced with segregation and evolution of a fluid phase in the pluton and its invasion into fractures and micro-fractures of the marmorized and skarnoid–hornfelsic rocks developed during sub-stage I. The introduction of considerable amounts of Fe, Si and Mg led to the development of substantial amounts of medium- to coarse-grained anhydrous calc-silicates. From texture and mineralogy the retrograde metasomatic stage can be divided into two discrete sub-stages: (a) early (sub-stage III) and (b) late (sub-stage IV). During sub-stage III, the previously formed skarn zones were affected by intense multiple hydro-fracturing phases in the Cu-bearing stock. In addition to Fe, Si and Mg, substantial amounts of Cu, Pb, Zn, along with volatile components such as H2S and CO2 were added to the skarn system. Consequently considerable amounts of hydrous calc-silicates (epidote, tremolite–actinolite), sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite), oxides (magnetite, hematite) and carbonates (calcite, ankerite) replaced the anhydrous calc-silicates. Sub-stage IV was concurrent with the incursion of relatively low temperature, more highly oxidizing fluids into skarn system, bringing about partial alteration of the early-formed calc-silicates and developing a series of very fine-grained aggregates of chlorite, clay, hematite and calcite.  相似文献   

13.
Batu Hijau is a world-class gold-rich porphyry copper deposit, situated in Sumbawa Island, Indonesia. Deep drilling indicates that several intervals of calc-silicate rock were intersected, where they are apparently interbedded with volcaniclastic rocks. The calc-silicate rocks occur at the contact with copper-gold-bearing tonalite porphyries. The rocks are fine-grained and granular with green, reddish-brown and white layers. The green layers consist mostly of fine-grained clinopyroxene (diopside and hedenbergite) and the reddish-brown layers consist mostly of garnet (andradite), whereas the white layers are commonly composed of calcite and zeolite (chabazite). The calc-silicate rocks were formed by contact metasomatism of andesitic volcaniclastic rocks, as it is calcic in composition. Paragenesis study reveals at least two stages of calc-silicate mineralization. Stage 1 (prograde) is characterized by the presence of garnet (andradite), clinopyroxene (diopside and hedenbergite), anorthite and quartz at 340–360 C (high salinity 35–45 NaCl wt percentage eqn.). Stage 2 (retrograde) is characterized by chlorite and rare epidote at 280–300 C (low salinity 1–10 NaCl wt% eqn.). Late calcite ± quartz veinlets and calcite + chabazite veins/veinlets may also be related to this stage and cross cut the oldest mineral assemblages. Mineralization (magnetite, chalcopyrite and pyrite) may occur during the retrograde stage. Clinopyroxene and garnet were modified by Fe-rich hydrothermal fluid (oxidizing condition) indicated by increase of Fe from core to rim of both the cogenetic minerals. The presence of the calc-silicate rocks associated with massive magnetite-chalcopyrite-pyrite assemblage indicates the occurrence of calcic-exoskarn surrounding the Batu Hijau porphyry copper-gold deposit.  相似文献   

14.
The Yangla deposit is an intrusion‐related Cu deposit in the Jinshajiang tectonic belt (eastern Sanjiang region, SW China). Despite extensive studies that have been conducted on this deposit, the relationship between the granitic magma and Cu mineralization is still unclear, and hence, the genesis is debated. To answer this question, we conducted an integrated study of mineralogy, fluid inclusions (FIs), and hydrogen and oxygen (H‐O) isotopes. Three mineralization stages were identified based on the ore textures, alteration zonation, and crosscutting relationships: (i) pre‐ore prograde skarn (stage I), with the garnet and pyroxene dominated by andradite and diopside, respectively; (ii) syn‐ore retrograde alteration (stage II), which is subdivided into the early syn‐ore stage (stage IIa) marked by retrograde hydrated mineral assemblages and significant Fe‐Cu‐Mo‐Pb‐Zn sulfide mineralization, and the late syn‐ore stage (stage IIb) featured by quartz‐calcite veins; and (iii) late supergene mineralization (stage III), which is characterized by secondary azurite and malachite. These results of mineralogy, FIs, and H‐O isotopes indicate that: (i) Cu mineralization has a close temporal, spatial, and genetic relationship with skarn alteration; (ii) the ore fluids were magmatic dominated with late‐stage meteoric water incursion; and (iii) Type‐S (halite‐bearing) and Type‐V (vapor‐rich) FIs coexisted in garnet and clinopyroxene of stage I, indicating that fluid boiling might have occurred during this stage. From stage I to stage IIa, the FI type transformed from Type‐S + Type‐V + Type‐L (liquid‐rich) to Type‐V + Type‐L with the conduct of mineralization and was accompanied by the disappearance of Type‐S, and homogenization temperature and salinity also tended to decrease dramatically, which may be caused by the deposition of skarn minerals. At stage IIa, boiling of the ore fluids still continued due to the change from lithostatic to hydrostatic pressure, which triggered the precipitation of abundant quartz‐Cu‐Mo‐Fe sulfides. Furthermore, fluid mixing between a high‐temperature magmatic fluid and a low‐temperature meteoric water might cause a considerable drop in temperature and the deposition of Cu‐bearing quartz/calcite veins during stage IIb. Hence, we consider the Yangla deposit to be of a skarn type, genetically related to the Mesozoic magmatism in the Sanjiang region.  相似文献   

15.
The Zhibula Cu skarn deposit contains 0.32 Mt. Cu metal with an average grade of 1.64% and is located in the Gangdese porphyry copper belt in southern Tibet. The deposit is a typical metasomatic skarn that is related to the interaction of magmatic–hydrothermal fluids and calcareous host rock. Stratiform skarn orebodies occur at the contact between tuff and marble in the Lower Jurassic Yeba Formation. Alteration zones generally grade from a fresh tuff to a garnet-bearing tuff, a garnet pyroxene skarn, and finally to a wollastonite marble. Minor endoskarn alteration zonations are also observed in the causative intrusion, which grade from a fresh granodiorite to a weakly chlorite-altered granodiorite, a green diopside-bearing granodiorite, and to a dark red-brown garnet-bearing granodiorite. Prograde minerals, which were identified by electron probe microanalysis include andradite–grossularite of various colors (e.g., red, green, and yellow) and green diopside. Retrograde metamorphic minerals overprint the prograde skarn, and are mainly composed of epidote, quartz, and chlorite. The ore minerals consist of chalcopyrite and bornite, followed by magnetite, molybdenite, pyrite, pyrrhotite, galena, and sphalerite. Three types of fluid inclusions are recognized in the Zhibula deposit, including liquid-rich two-phase inclusions (type L), vapor-rich two-phase inclusions (type V), and daughter mineral-bearing three-phase inclusions (type S). As the skarn formation evolved from prograde (stage I) to early retrograde (stage II) and later retrograde (stage III), the ore-forming fluids correspondingly evolved from high temperature (405–667 °C), high salinity (up to 44.0 wt.% NaCl equiv.), and high pressure (500–600 bar) to low-moderate temperature (194–420 °C), moderate-high salinity (10.1–18.3 and 30.0–44.2 wt.% NaCl equiv.), and low-moderate pressure (250–350 bar). Isotopic data of δ34S (− 0.1‰ to − 6.8‰, estimated δ34Sfluids =  0.7‰), δDH2O (− 91‰ to − 159‰), and δ18OH2O (1.5‰ to 9.2‰) suggest that the ore-forming fluid and material came from magmatic–hydrothermal fluids that were associated with Miocene Zhibula intrusions. Fluid immiscibility likely occurred at the stage I and stage II during the formation of the skarn and mineralization. Fluid boiling occurred during the stage III, which is the most important Cu deposition mechanism for the Zhibula deposit.  相似文献   

16.
付家山矽卡岩钨矿床位于长江中下游成矿带鄂东矿集区,矿体产于晚中生代花岗闪长斑岩体与下二叠统含碳质地层的接触带。付家山矿区西侧地层为茅口组灰岩,东侧地层为栖霞组灰岩,茅口组灰岩中有机碳含量(0.72%)低于栖霞组灰岩(0.95%)。为了探明不同地层对矽卡岩钨矿床的矿物成分的影响,文章针对付家山矽卡岩钨矿的地层、矽卡岩矿物和白钨矿进行详细地野外地质观察和编录,并利用电子探针(EMPA)开展矿物成分分析。东、西侧地层中矽卡岩阶段的石榴子石和辉石有明显差异,与茅口组接触交代形成的石榴子石变化范围较小(And_(31~90)Gro_(1~53)Spr_(5~20)),辉石端员成分变化范围变化较大(Di_(0~100)Hd_(0~97));而与栖霞组接触交代形成的石榴子石变化范围较大,主要为And_(66~95)Gro_(0~27)Spr_(3~7),部分为And_(19~33)Gro_(60~76)Spr_(3~7)。辉石端员成分为Di_(44~64)Hd_(29~49(。西侧矿段石英-硫化物阶段和方解石阶段中白钨矿的MoO_3相较于东侧矿段含量要高,产于茅口组矿体的石英-硫化物和方解石阶段白钨矿w(MoO_3)为0~1.82%,产于栖霞组矿体的石英-硫化物和方解石阶段白钨矿w(MoO_3)为0.08%~0.86%。上述矿物组合暗示付家山西侧矿段相较于东侧矿段形成环境更为氧化,表明含碳量不同的地层对矽卡岩钨矿的形成有明显的影响。  相似文献   

17.
The Ayazmant Fe–Cu skarn deposit is located approximately 20 km SE of Ayval?k or 140 km N of Izmir in western Turkey. The skarn occurs at the contact between metapelites and the metabasites of the Early Triassic K?n?k Formation and the porphyritic hypabyssal intrusive rocks of the Late Oligocene Kozak Intrusive Complex. The major, trace, and rare earth-element geochemical analysis of the igneous rocks indicate that they are I-type, subalkaline, calc-alkaline, metaluminous, I-type products of a high-level magma chamber, generated in a continental arc setting. The 40Ar–39Ar isochron age obtained from biotite of hornfels is 20.3 ± 0.1 Ma, probably reflecting the age of metamorphic–bimetasomatic alteration which commenced shortly after intrusion into impure carbonates. Three stages of skarn formation and ore development are recognized: (1) Early skarn stage (Stage I) consisting mainly of garnet with grossular-rich (Gr75–79) cores and andradite-rich (Gr36–38) rims, diopside (Di94–97), scapolite and magnetite; (2) sulfide-rich skarn (Stage II), dominated by chalcopyrite with magnetite, andraditic garnet (Ad8489), diopside (Di6575) and actinolite; and (3) retrograde alteration (Stage III) dominated by actinolite, epidote, orthoclase, phlogopite and chlorite in which sulfides are the main ore phases. 40Ar–39Ar age data indicate that potassic alteration, synchronous or postdating magnetite–pyroxene–amphibole skarn, occurred at 20.0 ± 0.1 Ma. The high pyroxene/garnet ratio, plus the presence of scapolite in calc-silicate and associated ore paragenesis characterized by magnetite (± hematite), chalcopyrite and bornite, suggests that the bulk of the Ayazmant skarns were formed under oxidized conditions. Oxygen isotope compositions of pyroxene, magnetite and garnet of prograde skarn alteration indicate a magmatic fluid with δ18O values between 5.4 and 9.5‰. On the basis of oxygen isotope data from mineral pairs, the early stage of prograde skarn formation is characterized by pyroxene (Di94–97)-magnetite assemblage formed at an upper temperature limit of 576 °C. The lower temperature limit for magnetite precipitation is estimated below 300 °C, on the basis of magnetite–calcite pairs either as fracture-fillings or massive ore in recrystallized limestone-marble. The sulfide assemblage is dominated by chalcopyrite with subordinate molybdenite, pyrite, cubanite, bornite, pyrrhotite, galena, sphalerite and idaite. Gold–copper mineralization formed adjacent to andradite-dominated skarn which occurs in close proximity to the intrusion contacts. Native gold and electrum are most abundant in sulfides, as fine-grained inclusions; grain size with varying from 5 to 20 µm. Sulfur isotope compositions obtained from pyrrhotite, pyrite, chalcopyrite, sphalerite and galena form a narrow range between ? 4.8 and 1.6‰, suggesting the sulfur was probably mantle-derived or leached from magmatic rocks. Geochemical data from Ayazmant shows that Cu is strongly associated with Au, Bi, Te, Se, Cd, Zn, Pb, Ni and Co. The Ayazmant mineralizing system possesses all the ingredients of a skarn system either cogenetic with, or formed prior to a porphyry Cu(Au–Mo) system. The results of this study indicate that the Aegean Region of Turkey has considerable exploration potential for both porphyry-related skarns and porphyry Cu and Au mineralization.  相似文献   

18.
The Nanling Range in South China hosts numerous world-class W–Sn deposits and some Fe deposits. The Mesozoic Tengtie Fe skarn deposit in the southern Nanling Range is contemporaneous with the regional Sn mineralization. The deposit is composed of numerous ore bodies along the contacts between the late Paleozoic or Mesozoic carbonate rocks and the Yanshanian Lianyang granitic complex. Interaction of the magma with hosting dolomitic limestone and limestone formed calcic (Ca-rich) and magnesian (Mg-rich) skarns, respectively. The Tengtie deposit has a paragenetic sequence of the prograde stage of anhydrous skarn minerals, followed by the retrograde stage of hydrous skarn minerals, and the final sulfide stage. Magnetite in the prograde and retrograde skarn stages is associated with diopside, garnet, chlorite, epidote, and phlogopite, whereas magnetite of the final stage is associated with chalcopyrite and pyrite. Massive magnetite ores crosscut by quartz and calcite veins are present mainly in the retrograde skarn stage. Laser ablation ICP-MS was used to determine trace elements of magnetite from different stages. Some magnetite grains have unusually high Ca, Na, K, and Si, possibly due to the presence of silicate mineral inclusions. Magnetite of the prograde stage has the highest Co contents, but that of the sulfide stage is extremely poor in Co which partitions in sulfides. Magnetite of magnesian skarns contains more Mg, Mn, and Al than that of calcic skarns, attributed to the interaction of the magma with compositionally different host rocks. Magnetite from calcic and magnesian skarns contains 6–185 ppm Sn and 61–1246 ppm Sn, respectively. The high Sn contents are not due to the presence of cassiterite inclusions which are not identified in magnetite. Instead, we believe that Sn resides in the magnetite structure. Regionally, intensive Mesozoic Sn mineralization in South China indicates that concurrent magmatic–hydrothermal fluids may be rich in Sn and contribute to the formation of high-Sn magnetite. Our study demonstrates that trace elements of magnetite can be a sensitive indicator for the skarn stages and wall-rock compositions, and as such, trace elemental chemistry of magnetite can be a potentially powerful fingerprint for sediment provenance and regional mineralization.  相似文献   

19.
An extensive complex zoned skarn is developed at the contact of a leucoadamellite intrusive at Doradilla, NW New South Wales. The skarn is a disequilibrium assemblage resulting from a progressive sequence of replacement of a carbonate precursor. Early grossular‐clinopyroxene rocks are replaced by andradite with 0.5–3.5 wt.% SnO2 clinopyroxene and quartz. Later alteration along fractures and bedding planes of the garnet‐clinopyroxene quartz assemblage has produced calcite‐malayaite (CaSn0.95Ti0.05SiO5) veins. The final replacement stage was the overprinting of the silicate phases by assemblages containing sulphides, cassiterite, magnetite, titanite, fluorite, biotite and chlorite. The tin content of garent increases with increasing andradite component suggesting replacement of Fe3+ by Sn4+. Associated clinopyroxenes contain 0.1% SnO2. The coexistence of titanite and its tin isomorph malayaite with extremely limited solid solution indicates late stage skarn temperatures of less than 400°C.  相似文献   

20.
哈萨克斯坦萨亚克大型铜矿田中, 矽卡岩型矿床的矿体赋存于石炭系灰岩与花岗岩类的接触带上, 矿体及其周围发育大量矽卡岩。矽卡岩矿物主要由石榴子石、辉石、绿帘石、绿泥石等组成, 矿石矿物主要发育黄铜矿、斑铜矿、黄铁矿、磁黄铁矿、辉钴矿等。萨亚克矽卡岩型矿床成矿作用分为5个阶段: 透辉石-石榴子石矽卡岩阶段、石榴子石矽卡岩阶段、绿帘石-磁铁矿阶段、石英-硫化物阶段和碳酸盐阶段。电子探针分析结果表明, 矿区矽卡岩属典型的钙质矽卡岩。 其中石榴子石发育3种类型, 均属钙铝-钙铁榴石固溶体系列, 自早期透辉石-石榴子石矽卡岩阶段至晚期石榴子石矽卡岩阶段, 由钙铁榴石向钙铝-钙铁榴石转变, 并且钙铁-钙铝榴石与矿化关系最为密切。其中具环带结构的石榴子石中钙铁与钙铝含量随环带呈韵律性变化, 表明生长过程中成分具震荡性变化, 形成于不完全封闭的平衡条件, 指示流体的多期次多阶段性; 辉石以透辉石为主; 绿帘石属绿帘石族中绿帘石范畴; 磁铁矿TFeO含量高, 与其他氧化物成分呈负相关关系。石英硫化物阶段早期发育黄铜矿-黄铁矿-磁黄铁矿-白铁矿、黄铜矿-辉钴矿矿物组合; 晚期为主要矿化阶段, 发育大量致密块状黄铜矿。黄铜矿显示贫硫富铜、铁特征; 黄铁矿为亏硫型; 磁黄铁矿属贫钴富镍型。矽卡岩矿物共生组合及石榴子石成分演化等矿物学特征显示, 成矿过程中随着温度及氧逸度的降低, 成矿热液由弱碱性向酸性演化, 伴随热液在接触带的中和作用, 以黄铜矿为主的金属硫化物富集沉淀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号