首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Carbonates in a 30 cm wide zoned kimberlite dyke from the De Beers Mine, Kimberley, S. Africa were studied by cathodoluminescence and electron microprobe techniques and their 87Sr/86Sr ratios were measured using an AEI-IM20 ion microprobe. Primary carbonates (including calcite dendrites, rhombohedral calcites in segregation vesicles and mosaic dolomite) have high Sr (0.69–1.35 wt.% SrO) and Ba (0.24–0.44% BaO) and 87Sr/86Sr ratios in the range 0.7046 to 0.7056. Secondary sparry calcite in amygdales and veins is characterised by low Ba (<0.05% BaO) and 87Sr/86Sr near 0.72. Rhombohedral calcite 0.5 cm from a contact with 2,900 my. old biotite-gneiss has minor element chemistry like that of primary carbonate, but an elevated 87Sr/86Sr ratio of 0.7103, possibly indicating crustal contamination in a boundary layer of the kimberlite magma. Amygdale-like segregations of carbonate and/or serpentine originated as gas-cavities and were not formed by liquid immiscibility. They are now filled either by secondary calcite or by minerals precipitated from residual kimberlite liquid. However, dendritic calcite and primary dolomite and calcite with high Sr, Ba and low 87Sr/86Sr demonstrate shared chemical characteristics between these carbonates and carbonatite. The primary kimberlite magma had initial 87Sr/86Sr close to 0.7046.  相似文献   

2.
Grasslands of north-central Kansas are underlain by carbonate aquifers and shale aquitards. Chemical weathering rates in carbonates are poorly known, and, because large areas are underlain by these rocks, solute fluxes are important to estimating global weathering rates. Grasslands exist where the amount of precipitation is extremely variable, both within and between years, so studies in grasslands must account for changes in weathering that accompany changes in precipitation. This study: (1) identifies phases that dominate chemical fluxes at Konza Prairie Biological Station (KPBS) and Long-Term Ecological Research Site, and (2) addresses the impact of variable precipitation on mineral weathering. The study site is a remnant tallgrass prairie in the central USA, representing baseline weathering in a mid-temperate climate grassland.Groundwater chemistry and hydrology in the 1.2 km2 watershed used for this study suggest close connections between groundwater and surface water. Water levels fluctuate seasonally. High water levels coincide with periods of precipitation plus low evapotranspiration rather than during precipitation peaks during the growing season. Precipitation is concentrated before recharging aquifers, suggesting an as yet unquantified residence time in the thin soils.Groundwater and surface water are oversaturated with respect to calcite within limitations of available data. Water is more dilute in more permeable aquifers, and water from one aquifer (Morrill) is indistinguishable from surface water. Cations other than Ca co-vary with each other, especially Sr and Mg. Potassium and Si co-vary in all aquifers and surface water, and increases in concentrations of these elements are the best indicators of silicate weathering at this study site. Silicate-weathering indices correlate inversely to aquifer hydraulic conductivity.87Sr/86Sr in water ranges from 0.70838 to 0.70901, and it decreases with increasing Sr concentration and with increasing silicate-weathering index. Carbonate extracted from aquifer materials, shales, soil, and tufa has Sr ranging from about 240 (soil) to 880 ppm (Paleozoic limestone). 87Sr/86Sr ranges from 0.70834 ± 0.00006 (limestone) to 0.70904 ± 0.00019 (soil). In all cases, 87Sr/86Sr of aquifer limestone is lower than 87Sr/86Sr of groundwater, indicating a phase in addition to aquifer carbonate is contributing solutes to water.Aquifer recharge controls weathering: during periods of reduced recharge, increased residence time increases the total amount of all phases dissolved. Mixing analysis using 87Sr/86Sr shows that two end members are sufficient to explain sources of dissolved Sr. It is proposed that the less radiogenic end member is a solution derived from dissolving aquifer material; longer residence time increases its contribution. The more radiogenic end member solution probably results from reaction with soil carbonate or eolian dust. This solution dominates solute flux in all but the least permeable aquifer and demonstrates the importance that land-surface and soil-zone reactions have on groundwater chemistry in a carbonate terrain.  相似文献   

3.
Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg−1 (mean = 2.52 g kg−1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25°C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700°C.  相似文献   

4.
Marbles from Changpu (Dabie Shan, eastern China), subducted to 4.4 GPa, have 87Sr/86Sr values < 0.7040. These low 87Sr/86Sr values, which would imply a sedimentation age > 2 Ga if considered as primary signature, reflect fluid–rock interaction with a fluid from a low‐87Sr/86Sr source. The introduction of low‐87Sr/86Sr was paralleled by introduction of Mg and loss of Si, K and Na in such a way that carbonates from the purest marbles have the least evolved Sr isotopic composition. Introduction of Mg is also indicated by the distribution of calcite and dolomite. Calcite forms inclusions in garnet, whereas dolomite is restricted to the matrix. These chemical changes, inferred from the mineralogy, in combination with textural evidence require a mobile metamorphic fluid. PTX constraints for fluid generation and for permeability increase related to mineral reactions and phase transitions suggest that the marbles acquired their anomalous Sr‐isotopic composition during subduction below 60 km. The marbles with the least radiogenic Sr isotopic composition demonstrate that crustal rocks may lose their isotopic fingerprint during deep subduction.  相似文献   

5.
古尔班通古特、腾格里和鄂尔多斯三个沙漠不同粒级组分的风成沙具有不同的εNd(0)和87Sr/86Sr 比值:古尔班通古特沙漠中分别为-3~-5.3 和0.712452~0.716895;腾格里沙漠中分别为-9.9~-12.3 和0.716753~0.723033;鄂尔多斯沙漠中分别在-13.1~-18 和0.714028~0.71678。三个沙漠不同的Sr-Nd 同位素特征,表明它们可能有各自的物质源区。Nd 同位素主要受各沙漠所处的地质、地貌单元所控制,Sr 同位素还要受气候变化诱导的矿物差异风化与粒度分选作用的影响。同位素组成在古尔班通古特、腾格里沙漠风成沙不同粒度组分中有相似的变化规律,但在鄂尔多斯沙漠中明显不同。鄂尔多斯沙漠风成沙粗、细颗粒组分有不同的物质来源,细颗粒组分,特别是<2μm 组分可能有沙漠区外远源的贡献,而其他沙漠各自的风成沙不同颗粒组分则来自相同的物源区,沙漠区外远源输入的可能性较小。这一研究对深入认识北方沙漠物质的成因机制有重要的理论意义。  相似文献   

6.
With an aim to increase the understanding about the isotopic and chemical heterogeneity of calcites in water-conducting fracture zones with different crystalline wall rock compositions at different depths, we present trace element chemistry, isotopic composition (δ18O, δ13C, 87Sr/86Sr) and biomarkers of euhedral low-temperature fracture-coating calcite. Paleohydrogeological fluctuations and wall rock influence on the hydrochemistry in the deep groundwater are explored. Samples are from several fracture zone sub-fractures (at −360 to −740 m), retrieved during an extensive core drilling campaign in Sweden.Calcite generally showed fracture zone specific values of δ13C, δ18O and 87Sr/86Sr, which indicates precipitation from relatively homogeneous fluid (similar to the modern groundwater at the site) at the same event in each fracture zone. δ18O and δ13C in the different fracture zones were consistent with precipitation from waters of different salinity and decreasing organic input with depth, respectively. The latter is also supported by biomarkers showing clear indications of SRB-related organic compounds (e.g. iso- and anteiso-C17:0-branched fatty acids), except in the deepest zone. In contrast to the isotopes, variation in trace elements within the fracture zones was generally up to several orders of magnitude. Manganese and REE, as oppose to the other metals, were higher in the shallow fracture zones (112–1130 and 44–97 ppm, respectively) than in the deeper (28–272 and 5–11 ppm, respectively), in agreement with the groundwater composition. Although the rock types varied between and within the different fracture zones, this had insignificant influence on the trace element chemistry of the calcites. Co-variation was generally relatively large for many trace elements, with isometric logratio correlation generally better than 0.75, which indicates that their variation in the calcites is due to variation of Ca in the fracture water, but other local factors, especially uptake in co-precipitating minerals (clay minerals, barite, pyrite and zeolites), but also microbial activity and metal speciation may have influenced the metal incorporation into calcite. These detailed studies of fracture calcite are of importance for the understanding of variation in fluid chemistry and trace metal uptake in fracture zones, adding together with hydrochemical studies detailed information optimal for site characterisation.  相似文献   

7.
Limestone cave deposits (speleothems) provide archives for past changes in regional climates over a range of timescales. While δ18O and δ13C in speleothem calcite have been commonly used for reconstruction of paleoclimates, we report here further efforts in the use of 87Sr/86Sr and Sr/Ca signals in speleothem calcite to deduce paleomonsoon variability near the Loess Plateau of central China. A two end-member mass-balance model of concentration and isotopic composition of strontium in a cave system is used to estimate variation of the 87Sr/86Sr ratio in sediments overlying a limestone cave. We show that this ratio reflects climate-driven variations in the provenance and the extent of chemical weathering of the epikarstic sediments. The measurements of 87Sr/86Sr made on a well-dated stalagmite, SFL, from Buddha Cave (33o40N′ 109o05′E) show ratios of 0.71092 to 0.71133 (±0.00001 as 2σ) during relatively cold periods (e.g., Marine Isotope Stage (MIS) 5b, 5d, and 8), lower than ratios of 0.71133 to 0.71194 during relatively warm periods (e.g., MIS 5a, 5c, 5e, and 7). As changes in the Sr/Ca ratio may affect speleothem 87Sr/86Sr, we show that the direct use of speleothem 87Sr/86Sr is less ideal than our modeled 87Sr/86Sr for the exogenic Sr source above the cave as a paleomonsoon proxy. Using the δ18O, δ13C, Sr/Ca, and 87Sr/86Sr records of the stalagmite, we reconstruct the variability of the East Asian monsoon for the time period between 70 and 280 kyr ago. The results show that summer monsoons were more intense during interglacial periods than during glacial periods.  相似文献   

8.
Sr and 87Sr/86Sr have been measured in the Yamuna river headwaters and many of its tributaries (YRS) in the Himalaya. These results, with those available for major ions in YRS rivers and in various lithologies of their basin, have been used to determine their contributions to riverine Sr and its isotopic budget. Sr in the YRS ranges from 120 to 13,400 nM, and 87Sr/86Sr from 0.7142 to 0.7932. Streams in the upper reaches, draining predominantly silicates, have low Sr and high 87Sr/86Sr whereas those draining the lower reaches exhibit the opposite resulting from differences in drainage lithology. 87Sr/86Sr shows significant co-variation with SiO2/TDS and (Na* + K)/TZ+ (indices of silicate weathering) in YRS waters, suggesting the dominant role of silicate weathering in contributing to high radiogenic Sr. This is also consistent with the observation that streams draining largely silicate terrains have the highest 87Sr/86Sr, analogous to that reported for the Ganga headwaters. Evaluation of the significance of other sources such as calc-silicates and trace calcites in regulating Sr budget of these rivers and their high 87Sr/86Sr needs detailed work on their Sr and 87Sr/86Sr. Preliminary calculations, however, indicate that they can be a significant source to some of the rivers.It is estimated that on an average, ∼25% of Sr in the YRS is derived from silicate weathering. In the lower reaches, the streams receive ∼15% of their Sr from carbonate weathering whereas in the upper reaches, calc-silicates can contribute significantly (∼50%) to the Sr budget of rivers. These calculations reveal the need for additional sources for rivers in the lower reaches to balance their Sr budget. Evaporites and phosphorites are potential candidates as judged from their occurrence in the drainage basin. In general, Precambrian carbonates, evaporites, and phosphorites “dilute” the high 87Sr/86Sr supplied by silicates, thus making Sr isotope distribution in YRS an overall two end member mixing. Major constraints in quantifying contributions of Sr and 87Sr/86Sr from different sources to YRS rivers are the wide range in Sr and 87Sr/86Sr of major lithologies, limited data on Sr and 87Sr/86Sr in minor phases and on the behavior of Sr, Na, and Ca during weathering and transport.The Ganga and the Yamuna together transport ∼0.1% of the global Sr flux at the foothills of the Himalaya which is in the same proportion as their contribution to global water discharge. Dissolved Sr flux from the Yamuna and its mobilization rate in the YRS basin is higher than those in the Ganga basin in the Himalaya, a result consistent with higher physical and chemical erosion rates in the YRS.  相似文献   

9.
《Applied Geochemistry》2006,21(10):1626-1634
Mineral waters in Britain show a wide range of 87Sr/86Sr isotope compositions ranging between 87Sr/86Sr = 0.7059 from Carboniferous volcanic rock sources in Dunbartonshire, Scotland to 87Sr/86Sr = 0.7207 in the Dalradian aquifer of Aberdeenshire, Scotland. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older rocks having a more radiogenic signature than those from younger rocks. This wide range of values means that the Sr isotope composition of mineral water has applications in a number of types of studies. In the modern commercial context, it provides a way of fingerprinting the various mineral waters and hence provides a method for recognising and reducing fraud. From an environmental perspective, it provides the first spatial distribution of bio-available 87Sr/86Sr in Britain that can be used in modern, historical and archaeological studies.  相似文献   

10.
We explored changes in the relative importance of carbonate vs. silicate weathering as a function of landscape surface age by examining the Ca/Sr and Sr isotope systematics of a glacial soil chronosequence located in the Raikhot watershed within the Himalaya of northern Pakistan. Bedrock in the Raikhot watershed primarily consists of silicate rock (Ca/Sr ≈ 0.20 μmol/nmol, 87Sr/86Sr ≈ 0.77 to 1.2) with minor amounts of disseminated calcite (Ca/Sr ≈ 0.98 to 5.3 μmol/nmol, 87Sr/86Sr ≈ 0.79 to 0.93) and metasedimentary carbonate (Ca/Sr ≈ 1.0 to 2.8 μmol/nmol, 87Sr/86Sr ≈ 0.72 to 0.82). Analysis of the exchangeable, carbonate, and silicate fractions of seven soil profiles ranging in age from ∼0.5 to ∼55 kyr revealed that carbonate dissolution provides more than ∼90% of the weathering-derived Ca and Sr for at least 55 kyr after the exposure of rock surfaces, even though carbonate represents only ∼1.0 wt% of fresh glacial till. The accumulation of carbonate-bearing dust deposited on the surfaces of older landforms partly sustains the longevity of the carbonate weathering flux. As the average landscape surface age in the Raikhot watershed increases, the Ca/Sr and 87Sr/86Sr ratios released by carbonate weathering decrease from ∼3.6 to ∼0.20 μmol/nmol and ∼0.84 to ∼0.72, respectively. The transition from high to low Ca/Sr ratios during weathering appears to reflect the greater solubility of high Ca/Sr ratio carbonate relative to low Ca/Sr ratio carbonate. These findings suggest that carbonate weathering controls the dissolved flux of Sr emanating from stable Himalayan landforms comprising mixed silicate and carbonate rock for tens of thousands of years after the mechanical exposure of rock surfaces to the weathering environment.  相似文献   

11.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

12.
The origin of pedogenic salts in the Atacama Desert has long been debated. Possible salt sources include in situ weathering at the soil site, local sources such as aerosols from the adjacent Pacific Ocean or salt-encrusted playas (salars), and extra-local atmospheric dust. To identify the origin of Ca and S in Atacama soil salts, we determined δ34S and 87Sr/86Sr values of soil gypsum/anhydrite and 87Sr/86Sr values of soil calcite along three east-west trending transects. Our results demonstrate the strong influence of marine aerosols on soil gypsum/anhydrite development in areas where marine fog penetrates inland. Results from an east-west transect located along a breach in the Coastal Cordillera show that most soils within 90 km of the coast, and below 1300 m in elevation, are influenced by marine aerosols and that soils within 50 km, and below 800 m in elevation, receive >50% of Ca and S from marine aerosols (δ34S values > 14‰ and 87Sr/86Sr values >0.7083). In areas where the Coastal Cordillera is >1200 m in elevation, however, coastal fog cannot penetrate inland and the contribution of marine aerosols to soils is greatly reduced. Most pedogenic salts from inland soils have δ34S values between +5.0 to +8.0‰ and 87Sr/86Sr ratios between 0.7070 and 0.7076. These values are similar to average δ 34S and 87Sr/86Sr values of salts from local streams, lakes, and salars (+5.4 ±2‰ δ34S and 0.70749 ± 0.00045 87Sr/86Sr) in the Andes and Atacama, suggesting extensive eolian reworking of salar salts onto the surrounding landscape. Ultimately, salar salts are precipitated from evaporated ground water, which has acquired its dissolved solutes from water-rock interactions (both high and low-temperature) along flowpaths from recharge areas in the Andes. Therefore, the main source for Ca and S in gypsum/anhydrite in non-coastal soils is indirect and involves bedrock alteration, not surficially on the hyperarid landscape, but in the subsurface by ground water, followed by eolian redistribution of ground-water derived salar salts to soils. The spatial distribution of high-grade nitrate deposits appears to correspond with areas that receive the lowest fluxes of local marine and salar salt, supporting arguments for tropospheric nitrogen as the main source for soil nitrate.  相似文献   

13.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   

14.
Carbonate cements (calcite, siderite, dolomite, and ankerite) formed throughout the diagenetic history of the Sag River and Shublik Formations. The trace element and isotopic geochemistry of these cements varies as a function of the timing of precipitation. Earliest calcites, formed prior to significant compaction of the sediment, are relatively enriched in Mg (up to 4·4 mol%), and have 87Sr/86Sr values (mean = 0·707898) compatible with the original marine pore waters. Later calcites are relatively Fe-rich (up to 5·0 mol%) and are characterized by increasing 87Sr/86Sr values (up to 0·712823) and Sr content with decreasing age. The Fe content of zoned siderite and dolomite/ankerite rhombs increases towards the outside of the rhombs (i.e. increasing Fe content with decreasing age). These geochemical variations appear principally to result from changes in pore-water chemistry during diagenesis. The increase in 87Sr/86 Sr and Sr content of the cements is most likely due to interaction between pore waters and 87 Sr-rich clay and possibly feldspar in Ellesmerian mudrocks (whole rock 87Sr/86 Sr signatures for the mudrocks are > 0·716). Pore-water Fe2+ concentration was probably controlled by diagenetic alterations involving Fe-bearing minerals (e.g. pyrite precipitation). A reconnaissance examination of carbonate cements in the overlying Kingak Shale indicates that similar alterations occurred in the Kingak. The low δ18 O value of some calcite cements (-11·96% PDB) suggests that an influx of meteoric water may have occurred in the mid-Neocomian, though the low value could also result from an abnormally high geothermal gradient associated with mid-Neocomian rifting.  相似文献   

15.
The fluorite deposits of the Valle de Tena, Central Pyrenees, include stratabound (Portalet) and vein (Lanuza and Tebarray) deposits the formation of which are linked to a Namurian-Westfalian emersion episode and to post-Hercynian hydrothermal systems similar to those occurring elsewhere in Hercynian Europe. In this study, strontium isotopes were used to determine the source(s) of strontium, and by inference calcium, of the fluorite mineralizations, as well as the nature of the ore-forming fluids. Fluorite and calcite from each deposit have similar 87Sr/86Sr ratios (Portalet 0.7085–0.7108; Lanuza 0.7086–0.7104 and Tebarray 0.7086–0.7101). In all deposits, the Sr isotope composition of most of the Ca-minerals is more radiogenic than that of the host limestones. This indicates that the Ca-minerals contain a mixture of Sr derived locally from the host limestones and 87 Sr-enriched Sr leached from silicate minerals in the siliciclastic portion of the basement sequence and in granites from the study area. Volcanic rocks are ruled out as a significant Sr source for the fluorite deposits. The observed trend in 87Sr/86Sr versus 1/Sr support a fluid-rock interaction model which satisfactorily reproduces the marked 87Sr-enrichment in the fluorites and calcites from the deposits. Received: 19 February 1997 / Accepted: 22 July 1997  相似文献   

16.
黄土高原黄土物源区的同位素证据   总被引:2,自引:0,他引:2       下载免费PDF全文
系统采集了黄土高原马兰黄土、河西走廊和青藏高原东北部黄土、河床沙和湖泥样品。用酸淋洗去除方解石后,黄土高原马兰黄土εNd(0)值从-9.2到-11.3,87Sr/86Sr比值从0.71784到0.71944,都落在同位素B区内,与青藏高原东北部、巴丹吉林沙漠和腾格里沙漠的值一致。黄土高原马兰黄土白云石的δ13C值从1.2‰到1.5‰,与青藏高原东北部和河西走廊黄土,巴丹吉林沙漠的白云石的值类似。这些表明青藏高原东北部、巴丹吉林沙漠和腾格里沙漠可能是黄土高原黄土的源区,从而排除了其他沙漠(古尔班通古特沙漠、塔克拉玛干沙漠、毛乌素沙漠、库布齐沙漠、浑善达克沙地、科尔沁沙地和呼伦贝尔沙地)作为黄土物源区的可能性。同位素研究结果和野外调查进一步揭示,黄土高原黄土、巴丹吉林沙漠和腾格里沙漠物质可能最终都是来源于青藏高原东北部。  相似文献   

17.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

18.
Changes in 87Sr/86Sr and major element geochemistry, from two sediment cores (9509 and 9501) in the Eastern Mediterranean (EM), were used to resolve changes in sediment provenance and, hence, determine climate changes in the Nile catchment and Eastern Sahara desert over the past 25 ka. The sediment was described by a three end-member system comprising Blue Nile (BN; 87Sr/86Sr = 0.7506; Sr = 210 ppm), White Nile (WN; 87Sr/86Sr = 0.7094; Sr = 72.5 ppm) and Saharan dust (SD; 87Sr/86Sr = 0.7183; Sr = 99 ppm). The sedimentary record of these cores represents the suspended load carried down the Nile river and discharged into the S.E. Levantine basin and thus records palaeoclimatically controlled changes in erosion and transport in the catchment. During arid periods (0–5 ka BP) and prior to 11 ka BP, fluxes of BN sediment at 9509 (~6 g/cm2/yr & 10–12 g/cm2/yr, respectively) were greater than during the peak of the African Humid Period (AHP) from 5 to 11 ka BP (<2 g/cm2/yr); this latter period witnessed the deposition of the youngest organic-rich sediment, termed sapropel (S-1), in the EM basin. By contrast the flux of WN increased during the AHP from ~5 g/cm2/yr at ~13 ka BP to >15 g/cm2/yr. In the Ethiopian Highlands (BN catchment) increases in the amount and duration of the monsoon during the AHP caused more vegetation to grow resulting in less soil erosion. In the WN catchment increased rainfall caused more catchment erosion and higher sediment flux through the Sudd marshes. The sedimentation rate in core 9509 increased during the AHP because of the greater importance of the WN sediment flux relative to the BN sediment flux. Saharan dust flux also decreased during the AHP reaching a minimum at ~6 ka BP (core 9509) due to ‘greening’ of the Sahara desert. At the onset of S-1, the changes in Nile flow as determined by 87Sr/86Sr and climatic changes in the EM basin determined by δ18O of planktonic foraminifera were simultaneous, confirming that such isotopic tracers cannot be used directly to determine the cause of the circulation changes in the EM at this time. The increase in the proportion of BN sediment at 9509 with a somewhat higher grain size during the H-1 period (15–17 ka BP) was caused by erosion and redistribution of sediment from the Nile delta and/or the Israeli coast as sea-level rose.  相似文献   

19.
Exhumation of the Himalayan-Tibetan orogen is implicated in the marked rise in seawater 87Sr/86Sr ratios since 40 Ma. However both silicate and carbonate rocks in the Himalaya have elevated 87Sr/86Sr ratios and there is disagreement as to how much of the 87Sr flux is derived from silicate weathering. Most previous studies have used element ratios from bedrock to constrain the proportions of silicate- and carbonate-derived Sr in river waters. Here we use arrays of water compositions sampled from the head waters of the Ganges in the Indian and Nepalese Himalaya to constrain the end-member element ratios. The compositions of tributaries draining catchments restricted to a limited range of geological units can be described by two-component mixing of silicate and carbonate-derived components and lie on a plane in multicomponent composition space. Key elemental ratios of the carbonate and silicate components are determined by the intersection of the tributary mixing plane with the planes Na = 0 for carbonate and constant Ca/Na for silicate. The fractions of Sr derived from silicate and carbonate sources are then calculated by mass-balance in Sr-Ca-Mg-Na composition space. Comparison of end-member compositions with bedrock implies that secondary calcite deposition may be important in some catchments and that dissolution of low-Mg trace calcite in silicate rocks may explain discrepancies in Sr-Ca-Na-Mg covariation. Alternatively, composition-dependent precipitation or incongruent dissolution reactions may rotate mixing trends on cation-ratio diagrams. However the calculations are not sensitive to transformations of the compositions by incongruent dissolution or precipitation processes provided that the transformed silicate and carbonate component vectors are constrained. Silicates are calculated to provide ∼50% of the dissolved Sr flux from the head waters of the Ganges assuming that discrepancies between Ca-Mg-Na covariation and the silicate rock compositions arise from addition of trace calcite. If the Ca-Mg-Na mixing plane is rotated by composition-dependent secondary calcite deposition, this estimate would be increased. Moreover, when 87Sr/86Sr ratios of the Sr inputs are considered, silicate Sr is responsible for 70 ± 16% (1σ) of the 87Sr flux forcing changes in seawater Sr-isotopic composition. Since earlier studies predict that silicate weathering generates as little as 20% of the total Sr flux in Himalayan river systems, this study demonstrates that the significance of silicate weathering can be greatly underestimated if the processes that decouple the water cation ratios from those of the source rocks are not properly evaluated.  相似文献   

20.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号