首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three soil profiles taken from the Hartwood Research Station in Central Scotland have been analyzed using chemical digestion and extraction techniques to investigate the chemical association of heavy metals deposited from the atmosphere. Total digestion, EDTA extraction and the BCR (Bureau Communitaire de Reference) sequential extraction procedure were used. In addition, lead isotope ratios in the whole soils and in the fractions from the sequential extraction procedure were measured using thermal ionisation mass spectrometry. All the digestion and extraction procedures gave clear indication of enhanced concentrations of heavy metals in surface soils, in particular for lead and zinc. Whereas total digestion gave a good indication of the heavy metal status of the soils, the extraction procedures were necessary to provide information on chemical association of the metals with soil components, information needed to understand the soil processes involved in mobilization of metals. Lead isotope analysis of the whole soils revealed a consistent picture of lower 206Pb/207Pb ratios in surface soils (1.140-1.147) than in soils at 20-30 cm depth (1.182-1.190). The steady progression from the lower to higher ratios down the profile was clear indication that anthropogenic lead had penetrated to some degree into the deeper soils. The combination of sequential extraction and lead isotope analysis proved to be a powerful approach to studying this effect in more detail and showed that the fractions extractable from 20 to 30 cm soils contained lead with much lower 206Pb/207Pb ratios (1.174-1.178) than the residual fraction (1.196-1.200). As the extractable fractions contained ≥85% of the lead in the soil, a substantial portion of lead at 20-30 cm depth was of anthropogenic origin. The 206Pb/207Pb ratios of 1.174-1.178 found in the extractable fractions suggested that the mobile component of the anthropogenic lead was that deposited before the introduction of leaded petrol.  相似文献   

2.
Todos os Santos (all Saints) Bay area on Brazil’s east coast is known for one of the most significant cases of lead contamination in the country owing to the past activities of a Pb-smelter plant. This work was carried out to assess the concentration and sources of Pb based on Pb isotopes and enrichment factor of soil profiles surrounding Todos os Santos Bay in order to understand the expansion of contamination and to help the establishment of Pb regulatory standards for the region. Forty-four samples were collected from soil genetic horizons of six pedons that represent the range of dominant soil properties and geologic materials in the region. Concentrations of Pb and the isotopes 204Pb, 206Pb, 207Pb, and 208Pb were determined on an inductively coupled plasma (quadrupole) mass spectrometry. The soil enrichment factor was calculated using Al and Fe as conservative index elements. Average Pb concentration (15.87 mg kg?1) in uppermost horizons (from all six pedons) is slightly higher than soil background concentrations commonly reported in Brazil. Samples feature a wide range of Pb isotope ratios, ranging from 36.71 to 47.38 for 208Pb/204Pb, 15.00 to 15.65 for 207Pb/204Pb, 16.86 to 20.59 for 206Pb/204Pb, and 1.10 to 1.31 for 206Pb/207Pb. For the enrichment factor calculations, only Fe demonstrated a good agreement with Pb isotopic ratios. Both Pb isotopic composition and enrichment factor were useful tools to distinguishing natural and anthropogenic influence on the Pb soil concentrations.  相似文献   

3.
Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km2), and analysed for Pb and three of the four naturally occurring Pb isotopes (206Pb, 207Pb and 208Pb) in a HNO3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct 206Pb/207Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the 206Pb/207Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the 206Pb/207Pb isotope ratio in the soil O horizon.  相似文献   

4.
Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Québec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between 206Pb/207Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m2.  相似文献   

5.
Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of anthropogenic Pb content and anthropogenic Pb sources in rural topsoils is remarkably limited. This study presents results of a survey of approximately 350 topsoil samples from rural locations covering the entire Netherlands, for which the bulk geochemical and Pb isotope compositions were determined. The specific aim of this study is to determine the anthropogenic Pb sources in the topsoils from rural areas in The Netherlands. The spatial distribution of anthropogenic Pb in soils in The Netherlands will be explained in terms of land use and pollution sources.Nearly all studied topsoils display Pb contents that exceed the amount expected based on the soil lithology. The range in Pb isotope ratios of the additional Pb fraction in rural Dutch topsoils is established at 1.056–1.199, 2.336–2.486 and 0.452–0.490 for 206Pb/207Pb, 207Pb/208Pb and 206Pb/208Pb, respectively. Five land use types are distinguished (forest, open nature, moor, arable land and grassland) with distinct isotopic compositions for added Pb. Additional Pb in soils of natural areas (forest, open nature and moor) has on average lower 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios than the agricultural soils (arable land and grassland). Additional Pb in both natural area soils and agricultural soils is interpreted to be of anthropogenic origin: most likely a mixture of coal/galena, incinerator ashes and gasoline Pb. The dominant sources of additional Pb in the topsoil of open nature areas are most likely incinerator ash and gasoline Pb. In contrast, the on average higher 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios of additional Pb in agricultural soils are most likely caused by the presence of animal manure and N–P fertilizers.Several areas are observed with notably high additional Pb contents (26–211 mg/kg on an organic matter-free basis) in the topsoil. The largest area is the Randstad area, which has the highest population and traffic density, and hosts a considerable fraction of the Dutch chemical industry. Two other areas with high additional Pb contents in the topsoil are located near the Dutch borders and are most likely influenced by German and Belgian chemical industries. The topsoils in the coastal dunes and southern, central and northern forests are characterized by relatively low additional Pb contents (<10 mg/kg on an organic matter-free basis). The population, traffic and chemical industry density is low in these areas and no fertilizers are applied.  相似文献   

6.
Systematic variations in the Cd and Pb isotope ratios in polluted topsoils surrounding the Jinding Pb–Zn mine in China were measured so that the sources of the metals could be traced. The average δ114/110Cd value and 206Pb/207Pb isotope ratio in background soils from the region were +0.41‰ and 1.1902, respectively, whereas the contaminated soil samples had different values, with the δ114/110Cd values varying between −0.59‰ and +0.33‰ and the 206Pb/207Pb isotope ratios varying between 1.1764 and 1.1896. We also measured the Cd and Pb isotopic compositions in oxide ores, sulfide ores, and slags, and found that binary mixing between ores and background soils could explain almost all of the variations in the Cd and Pb isotope ratios in the contaminated soils. This suggests that Cd and Pb pollution in the soils was mainly caused by the deposition of dust emitted during anthropogenic activities (mining and refining). The Pb and Cd isotope ratios clearly showed that contamination in soils in the northeastern part of the area was caused by surface mines and zinc smelters and their slagheaps, while contamination in soils in the southwestern part of the area also came from tailing ponds and underground mines. The main area of soil polluted by dust from Pb–Zn mining processes roughly extended for up to 5 km from the mine itself.  相似文献   

7.
The Pb contents and 206Pb/207Pb and 208Pb/206Pb isotopic ratios were studied in the soils and wines (2004 harvest) of three vineyard areas of the Czech Republic. The areas differ in their geological basements and anthropogenic loading. The isotopic compositions of wine in areas with intensive industry (Most, North Bohemia 206Pb/207Pbwine = 1.178 ± 0.004) and the agricultural areas of Central Bohemia (Roudnice nad Labem 206Pb/207Pbwine = 1.176 ± 0.007) are similar to the Pb isotopic composition of airborne particulate material typical of polluted and industrial environments (206Pb/207Pb = 1.17–1.19). The isotopic composition of wine from Prague (206Pb/207Pbwine = 1.174 ± 0.003) is different from that of the soil, which was severely contaminated in the past by vehicular Pb (206Pb/207Pbsoil = 1.147–1.168). This fact shows that interception of airborne Pb by plants is greater than its uptake by the root system.  相似文献   

8.
The Pb-isotope composition of soils and sediments has been measured from both highly contaminated and non-contaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 66 years. Spoil banks created by the dredging of the bayou bottom approximately 50 years ago are the main source of contamination within the ecosystem. The 206Pb/207Pb isotope composition of the contaminant is relatively constant averaging 1.275 ±0.008. A literature search reveals that such radiogenic values are typical of ores from southeastern Missouri. When surficial soil 206Pb/208Pb and 206Pb/207Pb isotope ratios are plotted against each other, a straight line is defined (r2=0.99). The linear correlation suggests mixing between Pb from the spoil banks and Pb from a natural source. The latter source may consist of Pb in soil that has been leached of its natural radiogenic component during weathering processes. Mixing calculations indicate that transport of contaminant Pb is widespread and occurs several hundred meters from the spoil banks. Despite the low Pb concentrations of some of the soils, the isotope data demonstrate that a significant amount of the Pb is derived from the pollutant source. Received: 12 July 1999 · Accepted: 14 September 1999  相似文献   

9.
若尔盖高原牧场处于中国偏远洁净高海拔地区,大气沉降是污染物主要来源途径之一。由于季风的影响,污染源的辨析较为困难。本文通过多点大气气溶胶不同季节同时采样方式,利用热电离固体同位素质谱仪可有效校正质谱分析中同位素分馏效应的优点,对若尔盖地区土壤和大气气溶胶的铅同位素比值进行精确分析,并结合季风特征对该地区污染物的来源进行解析。结果表明:土壤的208Pb/204Pb比值变化范围为38.79059±0.00194~38.94461±0.00135,206Pb/207Pb为1.18551±0.00002~1.19362±0.00002;大气气溶胶的208Pb/204Pb比值变化范围为37.49571±0.00117~38.48980±0.00105,206Pb/207Pb为1.12894±0.00001~1.16734±0.00001。该地区土壤铅同位素的特征是放射成因铅高,来自于自身天然存在的岩石矿物,与大气污染关系不大;大气气溶胶的铅同位素组成与土壤差异较大,显示为多元混合模式,受到了天然物质和人类活动来源的混合影响,机动车尾气及来自北部(兰州)和西北部(青海、新疆、哈萨克斯坦、俄罗斯)的大气远程运移是若尔盖大气气溶胶及污染物质的主要来源。  相似文献   

10.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

11.
Rock, soil, and plant (terrestrial moss, European mountain ash leaves, mountain birch leaves, bark and wood, and spruce needles and wood) samples, collected at 3 km intervals along a 120 km long transect (40 sites) cutting the city of Oslo, Norway, were analysed for their Pb concentration and Pb-isotope ratios. A general decrease in 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios, with a characteristic low variability in all plant materials and the plant-derived O-horizon of soil profiles, compared to rocks and mineral soils, is observed along the transect. It is demonstrated that minerogenic and biogenic sample materials belong to two different spheres, the lithosphere and biosphere, and that geochemical processes determining their chemical and isotopic compositions differ widely. Background variation for both sample materials needs to be established and documented at the continental and global scale before the anthropogenic influence on the geochemistry of the earth’s surface can be reliably estimated.  相似文献   

12.
Rare earth element (REE) distributions and Pb isotope compositions were explored in soils varying in age from ca. 0.4 to ?300 ka, developed on moraines in the Wind River Mountains, Wyoming. Soil extracts (0.6 M HCl) were used to examine the soil labile pool while the major element distribution in soil profiles was used to determine the extent of weathering at different soil depths. The results show that the chondrite-normalized REE patterns of the deepest bulk soil within each profile reflects the composition of the moraine till, except for the oldest soil. Up to ca. 12 ka, the soil extract fraction is enriched in light REE, indicating early release of light REE to the soil labile pool while that of the two oldest soils are relatively enriched in heavy REE. In the soil extracts the La/Sm ratio normalized to the deepest soil (LaD/SmD) decreases systematically with soil age. Similarly, the Eu-anomaly in the deepest soil from each profile (EuD/EuD*) decreases slightly with soil age in the three young soils; however, EuD/EuD* increases with soil age in the older soils. The systematic trends of these two ratios indicate the depletion of light REE in young soils and the enrichment of Eu and heavy REE in the older soils. Based on the Pb isotope ratios, the relative contribution of Pb to the soil labile pool via mineral weathering of U- or Th-rich phases was assessed for the different stages of weathering. The whole-soil profile 208Pb/204Pb ratio was found to decrease with soil age and with LaD/SmD, whereas it increased with the EuD/EuD* ratio. In each horizon, Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb) ratio generally decrease with soil age. In order to overcome possible effects from parent material heterogeneity, the amount of radiogenic Pb as compared to the whole-soil composition was calculated and this was found to decrease systematically with soil age.  相似文献   

13.
Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO3) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206Pb/207Pb, 206Pb/208Pb, and 208Pb/207Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg−1 versus TOP 6.9 mg kg−1). The 206Pb/207Pb ratios revealed a large spread along the transect with median 206Pb/207Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206Pb/207Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206Pb/207Pb and 206Pb/208Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.  相似文献   

14.
Lead concentrations were determined in samples of soil B-horizon (N = 258), forest-floor humus (O-horizon, N = 259), grass (Avenella flexuosa, N = 251) and spruce (Picea abies, N = 253) needles (2nd year) collected at the same locations evenly spread over the territory of the Czech Republic at an average density of 1 site/300 km2. Median Pb concentrations differ widely in the four materials: soil B-horizon: 27 mg/kg (3.3-220 mg/kg), humus: 78 mg/kg (19-1863 mg/kg), grass: 0.37 mg/kg (0.08-8 mg/kg) and spruce needles: 0.23 mg/kg (0.07-3 mg/kg). In the Pb distribution maps for humus, grass and spruce a number of well-known Pb-contamination sources are indicated by unusually high concentrations (e.g., the Pb smelter at Pribram, the metallurgical industry in the NE of the Czech Republic and along the Polish border, as well as the metallurgical industry in Upper Silesia and Europe’s largest coal-fired power plant at Bogatynia, Poland). The ratio 206Pb/207Pb was determined in all four materials. The median value of the 206Pb/207Pb isotope ratio in the soil B-horizon is 1.184 (variation: 1.145-1.337). In both humus and grass the median value for the 206Pb/207Pb isotope ratio is 1.162 (variation: 1.130-1.182), in spruce needles the median ratio is 1.159 (variation: 1.116-1.186). In humus, grass and spruce needles the known contamination sources are all marked by higher 206Pb/207Pb isotope ratios in the maps. Furthermore, the soil B-horizon, humus, grass and spruce needles show distinctly different spatial distribution patterns of the 206Pb/207Pb isotope ratios. The B-horizon does not provide a viable background value for metal concentrations in the O-horizon or plant materials. None of the maps provides evidence for the importance of traffic-related emissions for the observed isotope ratios at the scale of the Czech Republic.  相似文献   

15.
Anthropogenic Pb affects the environment worldwide. To understand its effect on forest ecosystem, Pb isotope ratios were determined in precipitation, various components of vegetation, the forest floor, soil and parent material in a Japanese cedar (Cryptomeria japonica D. Don) forest stand. The average 206Pb/207Pb ratio in bulk precipitation was 1.14 ± 0.01 (mean ± SD), whereas that in the subsoil (20–130 cm) was 1.18 ± 0.01. Intermediate ratios ranging from 1.15 to 1.16 were observed in the vegetation, the forest floor, and the surface soil (0–10 cm). Using the 206Pb/207Pb ratios, the contribution of anthropogenic sources to Pb accumulated in the forest were estimated by the simple binary mixing model. Sixty-two percent of the Pb in the forest floor, 71% in the vegetation, and 55% in the surface soil (0–10 cm) originated from anthropogenic sources, but only 16% in the sub-surface soil (10–20 cm) was anthropogenic. These results suggest that internal Pb cycling occurs mainly between surface soil and vegetation in a Japanese cedar ecosystem, and that anthropogenic Pb strongly influences Pb cycling. Although the Japanese cedar ecosystem has a shallow forest floor, very little atmospherically derived Pb migrated downward over 10 cm in depth.  相似文献   

16.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

17.
《Applied Geochemistry》1997,12(1):75-81
The extent of vertical migration of anthropogenic Pb beneath a medieval smelting site in Derbyshire, U.K. has been estimated using the determination of total Pb concentrations and 206Pb/207Pb isotope ratio from samples taken down 6 m of drill core. Preliminary studies of total Pb concentrations established that the surface slag derived from the smelting contained up to 16% Pb and that the normal background levels in uncontaminated sandstone were 10±2 ppm. Sample analyses beneath the site revealed elevated Pb concentrations in fracture infill clays (270 ppm Pb) and sandstone (76–83 ppm Pb). Both are well above the background Pb concentration.Lead isotope analysis of the slag wastes, the underlying contaminated sandstone and fracture infill has shown that all 3 contain very similar isotope ratios for 206Pb/207Pb (1.1802–1.1820). However, matched control sandstone samples show that the background 206Pb/207Pb isotope ratio (1.1670 ± 0.003) is distinctly different. This would indicate that both the sandstone and fracture infill underlying the historical smelting site contain a substantial proportion of Pb that has been derived from the overlying contamination.The application of total Pb concentrations along the core and isotope analysis suggest that anthropogenically derived Pb from the smelting site (that was operated between 665 and 445 a BP) has migrated to a depth of 4.50 m. Assuming a uniform migration rate and a mean time of migration of 555 a, then the mean migration rate is estimated to be 8 ± 2 mm/a.The proportion of natural versus anthropogenic Pb in the samples has been estimated from small variations in the 206Pb/207Pb isotope ratio. If the slag is considered to contain 100% anthropogenic Pb and the uncontaminated sandstone considered to contain 100% natural Pb, the linear interpolation can be applied between the 2 end members of the isotope ratio. The use of this approach to the 206Pb/207Pb ratio measurements has shown that 88% of the Pb in the contaminated sandstone (i.e. 69 ppm from a mean total Pb concentration of 78.5 ppm) has been derived from the anthropogenic Pb at the surface. For the fracture infill sample taken at a depth of 4.50 m, and with a total Pb concentration of 270 ppm, the % of Pb that has been derived from the slag wastes is approximately 98% (equivalent to 265 ppm Pb). The remaining Pb in both these samples (9.4 and 5 ppm, respectively) is deduced to have originated from the natural background concentration of Pb in the sandstone.The closeness of these estimates to the measured background concentration, suggests that a simple two-source model of Pb contamination is valid for this site.  相似文献   

18.
This paper dealt with the Pb contents and Pb isotopic composition of the West Lake Longjing tea. The results showed that in the tea leaves, from young leaf →old leaf →tea limb, the Pb contents tend to increase gradu-ally from 1.63 →4.84 →6.07×10-6, wich revealed that the Pb was accumulated gradually in the tea. After cleaned, the Pb contents of tea leaves were significantly reduced. This indicated that the deposits on the surface of tea leaves made a great contributuion to Pb contents. The survey results for soils in the relevant tea gardens showed that soil from the Longjing tea garden has higher Pb contents, with an average level of 49.6×10-6, two times those of common soils (24×10-6) in China. Results of the systematic analysis for tea, tea garden soil and the samples with the relevant background of the Pb isotopic composition displayed that the Pb isotopic ratio of tea is 206Pb/207Pb=1.164±0.005 (2σ). The ratio of 206Pb/207Pb for the soil gradually decreased from residue phase, soil dilute acid extract phase, and then to urban topsoil, i.e., 1.175 →1.171 →1.170. The 208Pb/(206Pb+207Pb) ratios also show a similar variation trend. 206Pb/207Pb ratios in the samples with the relevant background were: vehicle exhaust, 1.124; coal-combustion, 1.156; atmosphere, 1.168; and water, 1.166. Comparative studies have shown that Pb pollution is popular in the environ-mental media (soil, atmosphere, water) in Hangzhou. With the aggravation of Pb pollution, the Pb isotopic composi-tion gradually changed from the natural background (soil residues) to the direction of automobile exhaust. This phe-nomenon could illustrate that the pollution source was the vehicle exhaust, while the coal-combustion contributed little to environmental pollution in Hangzhou. The Pb of the Longjing tea came mostly from soluble phase Pb in the polluted soil. Moreover, secondary pollution was caused by vehicle exhaust.  相似文献   

19.
The Pb isotopic compositions of coexisting plagioclase and sulfide from the Bushveld Complex were determined by laser ablation multi-collector ICPMS (LA MC-ICPMS). The samples are of the upper Critical Zone in the northeast corner of the Complex and were collected from drill core and underground mine exposures. All the rocks are fresh and exhibit no evidence for alteration, weathering, or disruption of the Pb isotope systematics subsequent to the initial cooling of the intrusion. Furthermore, individual plagioclase and sulfide crystals do not contain enough U to warrant correction for radiogenic in-growth. For these reasons, the measured Pb isotope ratios approximate the initial ones. For plagioclase, 207Pb/206Pb ranges from 0.98 to 1.02 and 208Pb/206Pb from 2.26 to 2.35. Low 207Pb/206Pb and 208Pb/206Pb ratios characterize grain boundaries and partially annealed microcracks, some of which contain minute fragments of sulfide and other phases, and this accounts for most, if not all, the heterogeneity exhibited by individual samples. Real compositional differences exist, however, in plagioclase from different lithologic layers. For example, plagioclase 207Pb/206Pb values vary from 1.004 in norite beneath the Merensky pyroxenite to 1.009 in the mineralized pyroxenite, and 0.997 in overlying norite. In most samples in which sulfide and plagioclase coexist, the sulfide 207Pb/206Pb ratio is lower and 208Pb/206Pb ratio higher than the corresponding ones in plagioclase. For example, in a mineralized Merensky reef sample, average sulfide 207Pb/206Pb and 208Pb/206Pb ratios are 0.993 and 2.313, respectively, while those in plagioclase are 1.000 and 2.292. In one sample, the sulfide is extremely heterogeneous, with 207Pb/206Pb and 208Pb/206Pb ratios as low as 0.84 and 2.12. In this particular sample, the compositions must represent an isolated occurrence of addition of a young Pb component.The array of sulfide and plagioclase compositions requires multiple sources of Pb at the time of crystallization or soon thereafter. The disequilibrium between plagioclase and sulfide implies that some of the Pb originated from the isotopically distinct country rocks and was introduced at temperatures at which the composition of sulfide but not plagioclase could be modified. Thus, Bushveld sulfide, and to some extent plagioclase, do not reliably record the initial Pb isotopic composition(s) of the parent magma(s).  相似文献   

20.
The depth-distribution of lead and its stable isotope ratios were determined in a dated sediment core from a Canadian Shield lake receiving anthropogenic Pb inputs exclusively from atmospheric deposition. The results demonstrate that anthropogenic Pb deposited to the sediments of this lake since the preindustrial period can be modeled successfully using as little as two isotopically distinct Pb types. The first, whose flux was not detectable before 1850, reached a maximum value around 1950, and then decreased significantly thereafter; it was characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.222 and 0.495, respectively, and was derived mainly from coal combustion. The second, whose flux was not detectable before 1880, increased sharply to exceed that of the Pb type derived from coal combustion around 1930, and reached a maximum in the mid 1970s; it is characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.179 and 0.482, respectively, and was derived mainly from leaded gasoline combustion and industrial sources. The chronology of deposition of these two anthropogenic lead types agrees well with the historical records of fossil fuel uses in Canada and the USA, and also with the history of sediment-deposited polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion. The inventory of Pb derived from coal combustion (0.09 μmol cm−2) is ∼30% of that derived mainly, but not exclusively, from leaded gasoline (0.31 μmol cm−2). Apportionment among source regions of lead deposited to the sediments during the period when leaded gasoline dominated Pb atmospheric emissions indicates that ∼50% of this lead originated in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号