首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
黑龙江嫩江地区科洛杂岩伸展构造特征   总被引:2,自引:0,他引:2  
黑龙江省嫩江县科洛杂岩位于大兴安岭北段。详细的构造解析揭示,科洛杂岩内发育一处大型滑脱构造,其中包括鞘褶皱、层间柔皱、不对称褶皱、S-C组构、眼球状构造等构造样式,整体反映杂岩体向SE伸展滑脱的特征。结合年代学和岩石学方面的证据,认为科洛杂岩伸展滑脱始于中侏罗世晚期或稍后,其隆升机制应源于大兴安岭地区中、晚侏罗世岩浆的强烈底侵作用,导致整体隆升造山,伴随区域伸展滑脱,形成变质核杂岩。这为大兴安岭北段隆升机制和构造样式的研究提供了新证据。  相似文献   

2.
黑龙江嫩江地区科洛杂岩伸展构造特征   总被引:3,自引:0,他引:3  
黑龙江省嫩江县科洛杂岩位于大兴安岭北段.详细的构造解析揭示,科洛杂岩内发育一处大型滑脱构造,其中包括鞘褶皱、层间柔皱、不对称褶皱、S-C组构、眼球状构造等构造样式,整体反映杂岩体向sE伸展滑脱的特征.结合年代学和岩石学方面的证据,认为科洛杂岩伸展滑脱始于中侏罗世晚期或稍后,其隆升机制应源于大兴安岭地区中、晚侏罗世岩浆的强烈底侵作用,导致整体隆升造山,伴随区域伸展滑脱,形成变质核杂岩.这为大兴安岭北段隆升机制和构造样式的研究提供了新证据.  相似文献   

3.
新疆西天山那拉提构造带变质核部杂岩分布于新疆巩留县那拉提山山脊北侧,整体沿那位提南缘构造带北侧呈近东西向展布,为一套由高级变质表壳岩、灰色片麻岩组成的早前寒武系高级片麻岩系,历经多期不同构造体制变形变质改造与再造,形成多相片麻岩系,并呈长垣状变质核部杂岩隆升,构成那拉提造山带的核部构造物质组成。  相似文献   

4.
变质核杂岩研究进展、基本特征及成因探讨   总被引:26,自引:1,他引:26  
宋鸿林 《地学前缘》1995,2(1):03-111
本文对比了国内外变质核杂岩的基本特征后,重点探讨了几个问题:变质核杂岩发育的构造位置,既有如科迪勒拉变质核杂岩的陆缘冒地斜中心的,又有大量是陆内的。它们的基本结构更普通的是三层式,即在核杂岩和上部不变质的以发育正断层为特点的盖层之间,通常发育一套以浅变质的、发生过强烈近水平剪切所致的韧性流变的中间层状岩系;从韧性流变层的不均匀分布,反映出地热状态的横向不均一性;变质核杂岩的几何学、运动学、热状态及岩浆作用和变质作用等表明,幔源热隆、地壳的热软化、重力上浮及水平应力的联合作用可能是其隆升的原因。  相似文献   

5.
北京房山变质核杂岩的基本特征及其成因探讨   总被引:44,自引:4,他引:40  
宋鸿林 《现代地质》1996,10(2):149-158
摘要:北京房山变质核杂岩是典型的板内变质核杂岩。由核部的结晶基底及顶部的变余糜棱岩带、固态流变的中间层和脆性剪裂的上部盖层组成三层结构。核部有强力侵位的早白垩世的房山花岗闪长岩株。地壳的韧性伸展表现于下古生界及其前的盖层岩系中,形成于印支期前,反映了强烈的区域古地热异常。印支期的南北向挤压造就了区域构造格局。燕山期的岩浆侵入使变质核杂岩定型。新生代的差异性隆升使核杂岩最终出露地表。幔源热异常、基底热隆及岩浆的强力侵位是核杂岩形成的主要因素.  相似文献   

6.
庐山变质核杂岩具有典型的3层结构。拆离带是核部隆升过程中盖层滑脱、剪切变形而形成的,该拆离面是在北东向褶皱基础上叠加杂岩核部隆升作用而形成的波状起伏面。拆离带在核部以西发育倾向西向、南西向、北西向的面理和矿物生长线理,显示向西滑脱形成剪切拉伸变形的特征。拆离带岩石以糜棱岩和构造片岩为主,辅以碎裂岩和构造角砾岩。岩石变形特征表明其既具有韧性变形,也具有脆-韧性变形及脆性变形的特点。核部隆升引起的拆离变形作用,不仅形成了拆离带,还影响了拆离带以上盖层岩石,形成一个由拆离带向上由强变弱的变形域。这种规律性递变现象使庐山变质核杂岩具有垂向变形分层、水平变形分带的特点。拆离带中角闪石-斜长石矿物对计算得出的变质温度为653 ℃~694 ℃,压力为0.56~0.67 GPa。  相似文献   

7.
拉脊山-化隆变质核杂岩构造及其隆升机制探讨   总被引:1,自引:0,他引:1  
中祁连拉脊山、化隆地区的变质核杂岩是由韧性变形的太古宙、元古宙化隆群变质岩系组成核; 由脆-韧性变形和经受了低压变质的中、上寒武统和岩体组成中间层; 由脆性变形和未变质的下白垩统组成盖层.变质核杂岩的组成与结构显示了对称伸展和隆升的特征.23~ 32Ma是快速隆升的时期.主剥离断层剪切位移量约25~ 27km, 并根据矿物对计算, 变质核杂岩的伸展变质温度约625~ 630℃, 变质深度约20km, 变质压力约为0.63GPa, 属偏低压型区域热流变质作用.从青藏高原热壳、热幔、厚壳的演化历史及构造隆升活动来看, 认为拉脊山、化隆变质核杂岩是地幔热隆引起地壳伸展的典型实例, 是研究青藏高原岩石圈结构和高原隆升的重要窗口.   相似文献   

8.
对于喀喇沁变质核杂岩早白垩世构造过程与形成模式长期以来存在着不同的认识。通过详细的野外构造观察及擦痕应力场反演,并结合前人年代学数据,有效地制约了喀喇沁变质核杂岩早白垩世的构造演化,并对其形成模式进行了分析。结果表明,起源于晚侏罗世的喀喇沁变质核杂岩,在早白垩世(141~100 Ma)再次经历了强烈的伸展与岩浆活动。在此伸展活动中,沿着核部杂岩两侧分别发育了NE走向、倾向相反的楼子店-八里罕和上店-东风大型正断层,进而控制两侧半地堑式的小牛与平庄盆地的发育。在这两条边界断层的伸展运动及随后的均衡隆升中,核部杂岩不断抬升与剥露,先后发育了NE-NNE向的伸展韧性变形带与脆性正断层。这些早白垩世韧性和脆性伸展构造一致指示拉张方向为NW-SE向。综合分析表明,区内早白垩世伸展活动经历了141~134 Ma的初始伸展与同构造岩体侵位阶段、133~126 Ma的边界断层强烈活动与核部快速抬升阶段以及125~100Ma的均衡隆升阶段。喀喇沁变质核杂岩在早白垩世的伸展活动中转变为地垒式伸展穹窿,其强烈伸展活动出现在华北克拉通破坏峰期,动力学背景是古太平洋板块俯冲导致的远场弧后拉张。  相似文献   

9.
变质核杂岩或由拆离作用所致,或由地壳颈缩和岩浆上涌形成,但大多数变质核杂岩为上述共同作用结果。判别变质核杂岩形成机制的关键是确定其剪切作用类型,纯剪切代表地壳颈缩或岩体隆升,简单剪切代表拆离作用,一般剪切代表上述过程共同作用。小秦岭变质核杂岩的边缘发育典型的拆离断层,伸展方向为ESE-WNW,上盘自ESE向WNW运动。其广  相似文献   

10.
太行山阜平、赞皇隆起是中新生代变质核杂岩   总被引:13,自引:0,他引:13  
太行山阜平、赞皇隆起是中新生代变质核杂岩牛树银(河北地质学院,石家庄,050031)太行山区至少自燕山运动以来就显示出以伸展体制为主的变质核杂岩演化模式,阜平隆起(9000km2)、赞皇隆起(3850km2)是两个典型的变质杂岩核,中上元古界及其以上...  相似文献   

11.
内蒙古喀喇沁变质核杂岩及其隆升机制探讨   总被引:17,自引:11,他引:17  
内蒙古喀喇沁地区的变质核杂岩是由韧性变形的太古宙、元古宙变质岩素组成的核;由脆-韧性变形和经受了低压变质的中侏罗统地层组成的中间层;由少量脆性变形和未变质的上侏罗-下白垩统地层和岩体组成盖层。变质核杂岩的组成与结构显示了它对称伸展和不对称隆升的特征,130-100Ma是其快速隆升的时期。从该区长期的热演化历史以及同构造的岩浆活动来看,可以认为喀喇沁变质核杂岩是地幔热隆及岩浆侵入引起地壳伸展的典型实例。喀喇沁地区可以作为研究华北岩石圈结构和演化的窗口地区。  相似文献   

12.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

13.
The metamorphic complex of the North Golpayegan is part of the Sanandaj-Sirjan Zone. There are at least three distinct stages of deformation in this complex. Throughout the first stage, Paleozoic and Mesozoic sedimentary rocks have experienced regional metamorphism during Late Jurassic tectonic events related to the subduction of the Neo-Tethys oceanic lithosphere under the Iranian microcontinent. During the second deformation stage in the Late Cretaceous-Paleocene, the rocks have been mylonitized. The third stage of deformation in the region has led to folding and faulting superimposed on previous structures, and to exhumation of the metamorphic complex. This stage has determined the current morphology and N70E strike of the complex. The mylonitic zones of the second stage of deformation have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. The granitoids in the metamorphic complex have been injected along the extensional shear fractures related to the dextral transpressional displacements. The granitoids have been transformed into mylonites within the synthetic or antithetic shear zones. These granitoids are recognized as syncollision type (CCG) and have been formed at the end of orogenic events synchronous to the collision between the Arabian and the Iranian plates at the Late Cretaceous-Paleocene.  相似文献   

14.
长乐-南澳构造带变质变形期次划分及时代厘定   总被引:1,自引:0,他引:1  
石建基 《福建地质》2011,30(3):189-199
长乐-南澳构造带中发育有晚侏罗世早期、晚侏罗世晚期及早白垩世等3个不同时期的变质变形侵入岩。不同期次侵入岩具有不同的变质变形特征。根据糜棱岩的空间分布、糜棱叶理的切割关系等,表明构造带在中生代发生了3期韧性剪切变形及相关的动力变质作用。第一期为(北西西-南东东向)右行-推覆韧性剪切,具低角闪岩相变质、深部构造层次长石相...  相似文献   

15.
黑龙江新开岭变质核杂岩的组成及其演化   总被引:7,自引:4,他引:7  
新开岭变质核杂岩位于黑龙江省北部黑河地区,由断层下盘的变质核、拆离断层和上盘滑脱—冲断系所构成,地貌上呈长垣型的隆起带,变质核内面理外倾,盖层中褶皱轴向呈环形展布。本文根据同位素测年结果讨论了新开岭变质核杂岩的隆升和演化特征。中央侵入体花岗闪长岩的结晶年龄为171~164Ma,变质的白云母和流纹质糜棱岩的变形年龄分别为142Ma和155Ma,北部边界断裂带糜棱岩的40Ar-39Ar年龄为154.9±0.6Ma。中央侵入体的侵入时间代表了核杂岩的隆升时间,北部冲断带的年龄代表大规模的变形时间。岩浆流体、变质流体和构造流体的叠加使成矿更为有利,是今后找矿的重点地区。  相似文献   

16.
We have studied pebbles of igneous rocks from the Lower Jurassic sedimentary succession of Hall Island, Franz Josef Land. Pebbles are represented by felsic intrusive and extrusive rocks, often cataclased and greisenized. The U–Pb age of crystallization for zircons of the studied samples yielded the Latest Devonian–Early Carboniferous and Early–Middle Permian ages. In addition, the studied zircons demonstrate a broad scatter of ages, from Middle Paleozoic to Mesozoic, suggesting repeated thermal reworking and metamorphism of granites. It is shown that coeval Late Paleozoic magmatism indicates the similarity of the geological evolution of the northern Barents Sea and the Severnaya Zemlya archipelago.  相似文献   

17.
华北燕山造山带结构要素组合   总被引:19,自引:0,他引:19  
采用造山带结构要素组合的概念,对华北燕山造山带进行了研究。燕山造山带各演化阶段的结构要素组合特征如下:前造山和初始造山幕(J1),早侏罗世早期为前造山伸展构造,结构要素组合有:三又式裂谷带、板内型玄武岩、含煤建造;早侏罗世晚期为初始造山收缩构造,结构要素组合有:向北倾伏的褶曲与逆冲、九龙山组类磨拉石建造,硬绿泥石一十字石一蓝晶石为标志的低温、中一高压变质带。早期造山幕(J2),中侏罗世早期为同造山伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地及可能的同期侵入岩,火山岩线型分布;中侏罗世晚期为收缩构造,有关的结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩。峰期造山幕(J3),晚侏罗世早期同构造伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地与同期侵入岩,火山岩面型分布,火成岩组合中出现高压粗面岩类,较大量的流纹岩;晚侏罗世晚期收缩构造有关结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩,侵入岩中出现高压正长岩类。早白垩世早期(K1^1)晚造山幕有关的结构要素组合为:收缩变形分布较局限,湖相沉积建造替代磨拉石建造,侵入岩组合中出现过碱性石英正长岩,大晶洞构造的花岗岩及科马提质辉长岩等。早白垩世晚期(K1^2)后造山幕伸展有关的结构要素组合为:正断层、变质核杂岩、双峰式岩墙辟、典型的过碱性花岗岩和含煤建造。  相似文献   

18.
Whole rock, electron microprobe analyses and 40Ar/39Ar geochronology of certain ophioliterelated metamorphic rocks from beneath the Pindos, Vourinos, Othris and Euboea ophiolites of Greece show that they were formed mainly from ocean-type basalts, in part under P-T conditions of the upper mantle and that they have ages between 170–180 m.y. The evidence presented is inconsistent with the view that these sub-ophiolite metamorphic rocks were produced by the obduction of ocean-type crust onto a continental margin, or that they are remnant slices of Palaeozoic ‘basement’, but is consistent with their formation by thrusting and related metamorphism occurring within ocean lithosphere during the Lower to Middle Jurassic. It is proposed that this intraoceanic metamorphism was caused by the inception of a fault zone which subsequently became the transport surface for the main phase of ophiolite emplacement that occurred in the Hellenides from the Late Jurassic to Early Cretaceous.  相似文献   

19.
The Kalaqin metamorphic core complex, located on the northern margin of the Yanshan Tectonic Belt, is an important structure to understand the Late Mesozoic destruction processes of the North China Craton. In this study, structural analysis and geochronological investigation were conducted for the Anjiayingzi pluton and associated granodiorite dikes that intruded the core complex. Field observations demonstrated that emplacement of the pluton and dikes took place after the early stage extensional deformation, and intrusions are products of syn-tectonic magmatism during the late stage extension deformation. LA-ICP-MS zircon U-Pb dating yielded ages of 133-131 Ma for the Anjiayingzi pluton and 135 Ma for the dike, which demonstrated that the early extensional deformation took place at 156-135 Ma, rather than the Early Cretaceous as proposed previously. By integrating with other dating results, the early extensional deformation occurred at 156-150 Ma (Late Jurassic) and led to the exhumation of the core complex. The core complex was overprinted by a late extension in the Early Cretaceous. The revision of formation time for the Kalaqin metamorphic core complex further confirms that the extensional deformation took place in the Late Jurassic in the Yanshan tectonic belt, and therefore, it is likely that the northern margin of the North China Craton might have destructed since the Late Jurassic. © 2018, Science Press. All right reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号