首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
地球静止轨道卫星(GEO)在北斗卫星导航系统(Compass)的卫星导航中具有特别重要的作用,除了利用导航系统自身的伪距相位以外,利用其他的测轨系统对其进行精密定轨有着重要的意义。利用国家授时中心的转发式测轨网对Compass的GEO卫星进行观测,获取转发式测轨数据,利用该数据对Compass的GEO卫星进行精密定轨分析。分别从观测数据的观测精度,定轨残差以及轨道重叠误差等方面分析GEO卫星的定轨精度。  相似文献   

2.
地球静止轨道GEO卫星定轨是精密定轨领域的难点.依托我国区域范围地面跟踪网实际,提出了转发式测距数据支持下的GEO导航卫星精密定轨方案.从定轨精度、设备时延和伪距站对GEO轨道精度影响等方面进行了深入分析.试验结果证明:1 ns的时延误差引进的GEO轨道径向和位置误差分别为0.121 m和3.505 m.在多个转发式测距跟踪站约束的条件下伪距对定轨精度贡献非常有限,但通过星地钟差的估计可以实现时间同步,同步精度优于1 ns.这为时间同步提供了一种新的方法.当转发式测距跟踪站有限时伪距对GEO定轨的贡献非常明显,1CC(转发式跟踪站)+7L(伪距站)联合定轨条件下的轨道精度优于5 m.从而解决了GEO卫星精密定轨问题,同时实现了星地和站间时间同步以及卫星轨道与钟差参数的自洽.  相似文献   

3.
基于自发自收测距的GEO卫星精密定轨   总被引:1,自引:0,他引:1  
对于基于伪距测量模式的GEO卫星定轨,需要星地时间同步和站问时间同步的支持,因此卫星钟差和接收机钟差的精度直接制约了GEO卫星的定轨精度.自发自收式测距的观测数据并不含有卫星钟差和接收机钟差信患,定轨解算中避免了钟差精度带来的影响,可以实现GEO卫星的精密定轨.此处采用GEO卫星的自发自收武测距数据进行精密定轨试验,分析和讨论了基于自发自收式测距的GEO卫星精密定轨策略,提出了卫星轨控后轨道快速恢复的定轨策略.试验结果表明:轨道的内符R方向精度为1.615 m,位置精度为11.642m,定轨残差为0.279m;轨道恢复1 h后的定轨位置精度优于60m,恢复6 h后的定轨位置精度优于15m,定轨残差在0.15 m左右.  相似文献   

4.
地球静止轨道(GEO)卫星频繁的轨道机动对高精度、实时不间断的导航服务需求提出新的更高要求,如何在短弧跟踪条件下提高GEO卫星轨道快速恢复能力,是提升导航系统服务精度的关键因素。针对该问题,提出基于9参数星历拟合的GEO卫星短弧运动学定轨方法,详细推导定轨的数学模型与偏导模型,针对GEO卫星星历参数拟合中的奇异问题,提出相应的解决方法和措施。利用COMPASS GEO卫星实测自发自收数据进行短弧定轨试验与分析,结果表明:①10 min短弧运动学定轨的位置精度优于19 m,速度精度为4 mm/s,速度精度明显优于MEO卫星;②预报5 min的位置精度为17.760 m,预报10 min的位置精度为18.168 m;③解决GEO卫星频繁轨控所带来的轨道快速恢复问题,满足短弧跟踪条件下RDSS的服务需求。  相似文献   

5.
宋小勇  毛悦  贾小林 《测绘学报》2012,41(4):517-522
C波段转发测轨体制在GEO卫星测定轨中有突出优势,但其测量系统偏差的标校精度对定轨结果影响显著。基于L波段载波相位多星定轨结果,提出一种基于标准轨道拟合残差的系统偏差标校方法。该方法能够同时标校测量偏差及时标偏差,有利于弥补激光测距标校方法观测量较少的缺陷。利用国内监测站对中国导航卫星实测数据分析结果表明,经过标校后的C波段转发测轨精度可优于5 m,测量偏差及时标偏差具有较好的稳定性。  相似文献   

6.
我国COMPASS卫星导航系统利用GEO卫星作为导航星座。由于GEO卫星要进行位置保持及倾角保持,需要定期进行轨道机动,因此,如何实现机动期间的精密定轨及轨道预报是COMPASS导航系统正常运行需要解决的问题。本文利用国内基于C波段转发测距体制获取的实测GEO卫星机动期间测轨数据,分别用常数经验力模型、脉冲经验力模型、脉冲机动力模型、短弧动力学法进行机动期间动力学定轨试验,用轨道重叠弧段法、定轨残差分析法对四种模型轨道确定及预报效果进行评价。结果表明,脉冲力模型具有最好的轨道拟合及轨道预报效果;脉冲机动力模型尽管增加了解算参数,但对预报结果改善有限。  相似文献   

7.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

8.
刘伟平  郝金明  李建文  陈明剑 《测绘学报》2014,43(11):1132-1138
提供高精度的精密轨道产品对北斗系统的推广应用具有重要意义。给出了一种基于模糊度固定的北斗卫星多系统融合非差精密定轨方法,重点推导论述了模糊度固定的实现方法,并结合实测数据,对其精密定轨效果进行了分析,初步分析结果表明:利用本文方法,北斗GEO、IGSO、MEO卫星三维定轨精度分别达到1.263m、0.214m、0.134m,三类卫星径向定轨精度平均优于10cm,IGSO和MEO已经基本优于5cm;模糊度固定以后,北斗卫星三维定轨精度平均提高了21.8%,轨道切向精度改善最为明显,其中又以GEO卫星改进最大。  相似文献   

9.
针对北斗导航卫星系统首创的GEO+IGSO+MEO混合星座设计,本文研究了根据不同星座,采取不同约束条件和数据处理策略的北斗卫星精密定轨方法,提出了一种针对北斗系统混合星座的分层约束精密定轨方案。该方案首先将北斗卫星分为非GEO(IGSO/MEO)和GEO两部分进行解算,利用GPS解算的公共参数对北斗IGSO/MEO精密定轨形成有效约束,然后固定GPS和北斗IGSO/MEO解算结果,最后单独对北斗GEO卫星进行强约束下的轨道解算。利用实测数据进行了精密定轨试验,试验结果表明:采用本文提出的方法,北斗GEO卫星和非GEO卫星三维重叠弧段轨道精度分别为0.688 m和0.042 m,比传统方法分别提高了54.2%和72.4%。另外,采用激光测距检核和测站坐标静态精密单点定位的方法对轨道精度进行了验证,激光检核精度提高了44.3%,测站坐标在水平和高程方向上精度分别平均提升了21.5%和20.7%。  相似文献   

10.
北斗卫星精确定轨是北斗卫星导航系统应用与服务的核心技术,而地面测控站的分布是影响其精度的主要原因之一。针对北斗卫星地面跟踪站的现状,该文基于几何法定轨的基本原理,将卫星定轨的观测方程线性化,根据位置精度衰减因子值的构成,分析了测站分布与卫星定轨精度之间的关系。通过3种实验方案,对比不同测站分布和测站数量对北斗卫星定轨精度和计算效率的影响。实验结果表明:仅利用现有iGMAS站和BETS站的观测数据,很难获取高精度的北斗定轨结果;增加国际MGEX的北斗数据后,定轨精度有明显提高,尤其体现在GEO卫星切线方向;利用40个全球均匀分布的北斗站与利用70个站的定轨精度相当,但前者的解算效率较后者可提高近1倍。  相似文献   

11.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

12.
我国北斗卫星导航系统由GEO/IGSO/MEO混合星座构成,基本每7~10 d就会有一颗GEO卫星或IGSO卫星进行轨控操作。从卫星轨控开始,卫星存在5~6 h的不健康时期。造成机动卫星长期不健康的关键因素之一在于卫星和测站钟差数据的积累周期较长。本文提出了一种基于预报钟差的轨道快速恢复算法,通过结合星钟和站钟预报压缩机动卫星定轨观测数据积累的时间,从而缩短卫星恢复所需时间。6组机动试验结果表明:采用预报钟差策略在快速恢复初期的前几个小时对轨道预报的贡献尤为显著,对第1组定轨URE预报贡献最大可达84.82%。从3~8 h期间6组定轨平均情况来看,采用优化策略的预报URE,C01平均降低了26.06%,C04平均降低了31.58%,C03降低了9.95%。经测试该方法至少能将卫星不可用时间压缩1 h,对北斗系统建设具有重要工程应用价值。  相似文献   

13.
镜面投影法确定地球同步卫星精密轨道   总被引:2,自引:0,他引:2  
针对地球同步卫星(GEO)轨道面变化缓慢且能知道较准确近似值的特点,提出了镜面投影法。它以轨道面作对称面(镜面),将原观测站投影生成虚拟观测站;利用原站星距构成虚拟观测值。原观测值与虚拟观测值联合用于轨道参数估计,可以大大地增强观测几何结构,改善法方程状态,提高参数估值的精度。仿真计算的结果表明,新方法的效果明显。  相似文献   

14.
中国区域定位系统(CAPS)在试验验证阶段利用两颗同步轨道(GEO)通信卫星和两颗退役的GEO通信卫星组成导航星座,结合CAPS气压测高技术实现三维定位。根据CAPS的星座特点,分析了不采用气压测高实现转发式卫星导航定位的可行性和改变退役卫星轨道参数对星座PDOP值的影响。结果表明:调整两颗退役GEO通信卫星的轨道参数后,不采用气压测高技术也可以使CAPS在一天的较长时段内实现较高精度的导航定位。  相似文献   

15.
由于地基定轨系统的局限性,提出基于全球导航卫星系统(GNSS)的高轨卫星定轨方法,并设计实现了高轨卫星天基定轨仿真软件。结合高轨卫星天基定轨的特点和GNSS的建设现状,研究卫星可见性算法和星间观测模型,综合轨道积分和Kalman滤波方法的优点,提出确定高轨卫星轨道的积分滤波方法。仿真结果表明基于GNSS完成天基定轨增加了卫星的观测量,提高了定轨精度。最后在理论研究的基础上,自主开发了集STK、Matlab和Visual C++为一体的高轨卫星天基定轨仿真平台。为北斗系统应用于高轨卫星天基定轨提供了理论上的参考依据和模拟工具。  相似文献   

16.
北斗卫星导航系统(BeiDou satellite navigation system,BDS)目前暂未具有全球导航定位能力,卫星轨道的全程跟踪与测站的几何结构还不完善,影响了卫星轨道的测定精度。针对上述问题,根据动力学定轨的原理与方法,推导了多个全球导航卫星系统(global navigation satellite system,GNSS)联合定轨对参数求解精度的解析贡献量,并利用实测数据分析了BDS/GPS联合定轨对轨道和钟差求解精度的统计贡献量。结果表明,联合定轨对系统间公共参数求解精度的贡献显著,除地球静止轨道(geostationary orbit,GEO)卫星外,其余轨道和钟差求解精度均有显著提高。BDS/GPS联合定轨对BDS卫星轨道、卫星钟差均方根误差(root mean square,RMS)以及接收机钟差RMS的统计贡献量分别为36.21%、26.88%和20.88%,其中对可视卫星数较少的区域接收机钟差求解精度的贡献尤为显著,贡献量为45.95%。  相似文献   

17.
刘伟平  郝金明  于合理  田英国 《测绘学报》2016,45(10):1157-1164
目前,北斗卫星多天解轨道主要是通过常规的数据累积解算获得,处理效率较低。此外,由于开通运行不久,北斗卫星力学模型尚未完善,限制了多天解轨道精度的进一步提高。针对以上问题,本文提出了附加伪随机脉冲的北斗卫星多天轨道合成方法,利用法方程叠加实现北斗卫星多天轨道合成,可有效提高轨道解算效率。同时,利用伪随机脉冲对力学模型的补偿作用,进一步提高了多天轨道合成的精度水平。实测数据分析表明:在多天轨道合成中,单天边界附加伪随机脉冲对北斗卫星轨道精度有明显改进作用。其中,3类卫星切向、法向轨道精度的改善程度大于径向,GEO和IGSO卫星轨道精度的提高幅度大于MEO卫星。一定范围内,随着定轨弧段的增长,北斗卫星定轨精度能够得到不同程度的改善,且主要表现在轨道切向。  相似文献   

18.
In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号