首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider numerical algorithms for modeling of the time‐dependent coupling between the fluid flow and deformation in elastic porous media. Here, we employ a four‐field formulation which uses the total stress, displacement, flux, and pressure as its primary variables and satisfies Darcy's law and linear elasticity in mixed weak form. We present four different iteratively coupled methods, known as drained, undrained, fixed‐strain, and fixed‐stress splits, in which the diffusion operator is separated from the elasticity operator and the two subproblems are solved in a staggered way while ensuring convergence of the solution at each time step. A‐priori convergence results for each iterative coupling which differs from those found when using a traditional two‐field or three‐field formulation are presented. We also present some numerical results to support the convergence estimates and to show the accuracy and efficiency of the algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In a previous publication we developed a new mixed least‐squares method for poro‐elasticity. The approximate solution was obtained via a minimization of a least‐squares functional, based upon the equations of equilibrium, the equations of continuity and weak forms of the constitutive relationships for elasticity and Darcy flow. The formulation involved four independent types of variables: displacements, stresses, pore pressures and velocities. All of them were approximated by linear continuous triangles. Encouraged by the computational results, obtained from the two‐dimensional implementation of the method, we extended our formulation to three dimensions. In this paper we present numerical examples for the performance of continuous linear tetrahedra within the context of the mixed least‐squares method. The initial results suggest that the method works well in the nearly and entirely incompressible limits for elasticity. For poro‐elasticity, the obtained pore pressures are stable without exhibiting the oscillations, which are observed when the standard Galerkin formulation is used. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper examines the performance of the Jacobi preconditioner when used with two Krylov subspace iterative methods. The number of iterations needed for convergence was shown to be different for drained, undrained and consolidation problems, even for similar condition number. The differences were due to differences in the eigenvalue distribution, which cannot be completely described by the condition number alone. For drained problems involving large stiffness ratios between different material zones, ill‐conditioning is caused by these large stiffness ratios. Since Jacobi preconditioning operates on degrees‐of‐freedom, it effectively homogenizes the different spatial sub‐domains. The undrained problem, modelled as a nearly incompressible problem, is much more resistant to Jacobi preconditioning, because its ill‐conditioning arises from the large stiffness ratios between volumetric and distortional deformational modes, many of which involve the similar spatial domains or sub‐domains. The consolidation problem has two sets of degrees‐of‐freedom, namely displacement and pore pressure. Some of the eigenvalues are displacement dominated whereas others are excess pore pressure dominated. Jacobi preconditioning compresses the displacement‐dominated eigenvalues in a similar manner as the drained problem, but pore‐pressure‐dominated eigenvalues are often over‐scaled. Convergence can be accelerated if this over‐scaling is recognized and corrected for. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Development of robust numerical solutions for poro‐elasticity is an important and timely issue in modern computational geomechanics. Recently, research in this area has seen a surge in activity, not only because of increased interest in coupled problems relevant to the petroleum industry, but also due to emerging applications of poro‐elasticity for modelling problems in biomedical engineering and materials science. In this paper, an original mixed least‐squares method for solving Biot consolidation problems is developed. The solution is obtained via minimization of a least‐squares functional, based upon the equations of equilibrium, the equations of continuity and weak forms of the constitutive relationships for elasticity and Darcy flow. The formulation involves four separate categories of unknowns: displacements, stresses, fluid pressures and velocities. Each of these unknowns is approximated by linear continuous functions. The mathematical formulation is implemented in an original computer program, written from scratch and using object‐oriented logic. The performance of the method is tested on one‐ and two‐dimensional classical problems in poro‐elasticity. The numerical experiments suggest the same rates of convergence for all four types of variables, when the same interpolation spaces are used. The continuous linear triangles show the same rates of convergence for both compressible and entirely incompressible elastic solids. This mixed formulation results in non‐oscillating fluid pressures over entire domain for different moments of time. The method appears to be naturally stable, without any need of additional stabilization terms with mesh‐dependent parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Similar to plane strain, axisymmetric stress problem is also highly kinematics constrained. Standard displacement‐based finite element exhibits volumetric locking issue in simulating nearly/fully incompressible material or isochoric plasticity under axisymmetric loading conditions, which severely underestimates the deformation and overestimates the bearing capacity for structural/geotechnical engineering problems. The aim of this paper is to apply variational multiscale method to produce a stabilized mixed displacement–pressure formulation, which can effectively alleviate the volumetric locking issue for axisymmetric stress problem. Both nearly incompressible elasticity and isochoric J2 elastoplasticity are investigated. First‐order 3‐node triangular and 4‐node quadrilateral elements are tested for locking issues. Several representative simulations are provided to demonstrate the performance of the linear elements, which include the convergence study and comparison with closed‐form solutions. A comparative study with pressure Laplacian stabilized formulation is also presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Dynamic two‐phase interaction of soil can be modelled by a displacement‐based, two‐phase formulation. The finite element method together with a semi‐implicit Euler–Cromer time‐stepping scheme renders a discrete equation that can be solved by recursion. By experience, it is found that the CFL stability condition for undrained wave propagation is not sufficient for the considered two‐phase formulation to be numerically stable at low values of permeability. Because the stability analysis of the two‐phase formulation is onerous, an analysis is performed on a simplified two‐phase formulation that is derived by assuming an incompressible pore fluid. The deformation of saturated porous media is now captured in a single, second‐order partial differential equation, where the energy dissipation associated with the flow of the fluid relative to the soil skeleton is represented by a damping term. The paper focuses on the different options to discretize the damping term and its effect on the stability criterion. Based on the eigenvalue analyses of a single element, it is observed that in addition to the CFL stability condition, the influence of the permeability must be included. This paper introduces a permeability‐dependent stability criterion. The findings are illustrated and validated with an example for the dynamic response of a sand deposit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Unbounded plane stress and plane strain domains subjected to static loading undergo infinite displacements, even when the zero displacement boundary condition at infinity is enforced. However, the stress and strain fields are well behaved, and are of practical interest. This causes significant difficulty when analysis is attempted using displacement‐based numerical methods, such as the finite‐element method. To circumvent this difficulty problems of this nature are often changed subtly before analysis to limit the displacements to finite values. Such a process is unsatisfactory, as it distorts the solution in some way, and may lead to a stiffness matrix that is nearly singular. In this paper, the semi‐analytical scaled boundary finite‐element method is extended to permit the analysis of such problems without requiring any modification of the problem itself. This is possible because the governing differential equations are solved analytically in the radial direction. The displacement solutions so obtained include an infinite component, but relative motion between any two points in the unbounded domain can be computed accurately. No small arbitrary constants are introduced, no arbitrary truncation of the domain is performed, and no ill‐conditioned matrices are inverted. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The paper considers a plane joint or interface element suitable for implementation into a standard non-linear finite element code. The element is intended to model discontinuities with rough contact surfaces, such as rock joints, where dilatant behaviour is present. Of particular concern is the formulation of a constitutive model which fully caters for all possible histories of opening, closing and sliding (accompained by dilation or contraction) in any direction. The non-linear incremental constitutive equations are formulated in a manner appropriate for a back-ward difference discretization in time along the path of loading. The advantage of such an approach is that no essential distinction need be drawn between opening, closing and sliding. Further, a convenient formulation of the constitutive equations is facilitated by representing the different contact conditions in relative displacement space. The state diagram in relative displacement space, however, changes from one time step to the next, and evolution equations for the updating must be formulated. These concepts are illustrated for two rock-joint models: a sawtooth asperity model and a limited dilation model. The models are based on a penalty formulation to enforce the contact constraints, and explicit equations for the tangent stiffness matrix and for the corrector step of the standard Newton–Raphson iterative algorithm are derived. These equations have been implemented as an user element into the finite element code ABAQUS7. Three examples are presented to illustrate the predictions of the formulation.  相似文献   

10.
A new formulation of the element‐free Galerkin (EFG) method is developed for solving coupled hydro‐mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro‐mechanical problems. Examples are studied and compared with closed‐form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro‐mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half‐space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth‐order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed‐boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary‐layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half‐space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, forced rocking vibration of a rigid circular disc placed in a transversely isotropic full‐space, where the axis of material symmetry of the full‐space is normal to the surface of the plate, is analytically investigated. Because of using the Fourier series and Hankel integral transforms, the mixed boundary‐value problem is transformed into two separate pairs of integral equations called dual integral equations. The dual integral equations involved in this paper are reduced to Fredholm integral equations of the second kind. With the aid of contour integration, the governing integral equation is numerically evaluated in the general dynamic case. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly determined, and it is shown that the pressure in between the plate and the full‐space and the compliance function reduced for isotropic half‐space are identical to the previously published solutions. The dynamic contact pressure in between the disc and the space and also the related impedance function are numerically evaluated in general dynamic case and illustrated. It is shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. To show the effect of material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A novel procedure associated with the precise integration method (PIM) and the technique of dual vector is proposed to effectively calculate the magnitude and distribution of deformations in a homogeneous multilayered transversely isotropic medium. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the soil system. The linearly elastic medium is subjected to four types of vertically acting axisymmetric loads prescribed either at the external surface or in the interior of the soil medium. There are no limits for the thicknesses and number of soil layers to be considered. By virtue of the governing equations of motion and the constitutive equations of the transversely isotropic elastic body, and based on the Hankel integral transform and a dual vector formulation in a cylindrical coordinate system, the partial differential motion equations can be converted into first‐order ordinary differential matrix equations. Applying the approach of PIM, it is convenient to obtain the solutions of ordinary differential matrix equations for the continuously homogeneous multilayered transversely isotropic elastic soil in the transformed domain. The PIM is a highly accurate algorithm to solve the sets of first‐order ordinary differential equations, which can ensure to achieve any desired accuracy of the solutions. What is more, all calculations are based on the standard method with the corresponding algebraic operations. Computational efforts can be reduced to a great extent. Finally, numerical examples are provided to illustrate the accuracy and effectiveness of the proposed approach. Some more cases are analyzed to evaluate the influences of the elastic parameters of the transversely isotropic media on the load‐displacement responses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A micro‐hydromechanical model for granular materials is presented. It combines the discrete element method for the modeling of the solid phase and a pore‐scale finite volume formulation for the flow of an incompressible pore fluid. The coupling equations are derived and contrasted against the equations of conventional poroelasticity. An analogy is found between the discrete element method pore‐scale finite volume coupling and Biot's theory in the limit case of incompressible phases. The simulation of an oedometer test validates the coupling scheme and demonstrates the ability of the model to capture strong poromechanical effects. A detailed analysis of microscale strain and stress confirms the analogy with poroelasticity. An immersed deposition problem is finally simulated and shows the potential of the method to handle phase transitions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential/capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes, the resulting systems of nonlinear algebraic equations are solved with Newton’s method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust, and efficient. In particular, no postprocessing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1,000 processors.  相似文献   

16.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The discontinuous deformation analysis (DDA) with second‐order displacement functions was derived based on six‐node triangular mesh in order to satisfy the requirement for the accurate calculations in practical applications. The matrices of equilibrium equations for the second‐order DDA were given in detail for program coding. By close comparison with widely used finite element method and closed form solutions, the advantages of the modified DDA were illustrated. The program coding was carried out in C++ environment and the new code applied to three examples with known analytical solutions. A very good agreement was achieved between the analytical and numerical results produced by the modified DDA code. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The scaled boundary finite‐element method is derived for elastostatic problems involving an axisymmetric domain subjected to a general load, using a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system. The method is particularly well suited to modelling unbounded problems, and the formulation allows a power‐law variation of Young's modulus with depth. The efficiency and accuracy of the method is demonstrated through a study showing the convergence of the computed solutions to analytical solutions for the vertical, horizontal, moment and torsion loading of a rigid circular footing on the surface of a homogeneous elastic half‐space. Computed solutions for the vertical and moment loading of a smooth rigid circular footing on a non‐homogeneous half‐space are compared to analytical ones, demonstrating the method's ability to accurately model a variation of Young's modulus with depth. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical simulation is presented for three-dimensional three-phase fluid flow in a deforming saturated oil reservoir. The mathematical formulation describes a fully coupled governing equation systen which consists of the equilibrium and continuity equations for three immiscible fluids flowing in a porous medium. An elastoplastic soil model, based on a Mohr–Coulomb yield surface, is used. The finite element method is applied to obtain simultaneous solutions to the governing equations where displacement and fluid pressures are the primary unknowns. The final discretized equations are solved by a direct solver using fully implicit procedures. The developed model is used to investigate the problems of three-phase fluid flow in a deforming saturated oil reservoir.  相似文献   

20.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号