首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half‐space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth‐order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed‐boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary‐layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half‐space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Based on the Biot's poroelastic theory and using scalar potential functions both the ring load and point load displacement Green's functions for a transversely isotropic saturated porous full‐space composed of an upper half‐space, a finite thickness middle layer and a lower half‐space is analytically presented for the first time. It is assumed that each region consists of a different transversely isotropic material. The equations of poroelastodymanics in terms of the solid displacements and the pore fluid pressure are uncoupled with the help of two scalar potential functions, so that the governing equations for the potential functions are either a second order wave equation or a repeated wave‐heat transfer equation of sixth order. With the aid of Fourier expansion with respect to circumferential direction and Hankel integral transforms with respect to the radial direction in cylindrical coordinate system, the response is determined in the form of line integrals in the real space, followed by theorem of inverse Hankel integral transforms. The solutions degenerate to a single phase elastic material, and the results are compared with previous studies, where an excellent agreement may be observed with the results provided in the literature. Some examples of displacement Green's functions are finally given to illustrate the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A transversely isotropic linear elastic half‐space, z?0, with the isotropy axis parallel to the z‐axis is considered. The purpose of the paper is to determine displacements and stresses fields in the interior of the half‐space when a rigid circular disk of radius a completely bonded to the surface of the half‐space is rotated through a constant angle θ0. The region of the surface lying out with the circle r?a, is free from stresses. This problem is a type of Reissner–Sagoci mixed boundary value problems. Using cylindrical co‐ordinate system and applying Hankel integral transform in the radial direction, the problem may be changed to a system of dual integral equations. The solution of the dual integral equations is obtained by an approach analogous to Sneddon's (J. Appl. Phys. 1947; 18 :130–132), so that the circumferential displacement and stress fields inside the medium are obtained analytically. The same problem has already been approached by Hanson and Puja (J. Appl. Mech. 1997; 64 :692–694) by the use of integrating the point force potential functions. It is analytically proved that the present solution, although of a quite different form, is equivalent to that given by Hanson and Puja. To illustrate the solution, a few plots are provided. The displacements and the stresses in a soil deposit due to a rotationally symmetric force or boundary displacement may be obtained using the results of this paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A transversely isotropic multi‐layered half‐space, with axis of material symmetry perpendicular to the free surface, supports a flexible either annular or solid circle foundation. The contact area of the foundation and the half‐space is considered to be both frictionless and tensionless. The foundation is assumed to be affected by a vertical static axisymmetric load. Detailed analysis of the interaction of these two systems with different thickness of layers is the target of this paper. With the use of ring load Green's functions for both the foundation and the continuum half‐space, an integral equation accompanied with some inequalities is introduced to model the complex BVP. With the incorporation of ring‐shape FEM, we are capable of capturing both regular and singular solution smoothly. The validity of the combination of the analytical and numerical method is proved with comparing the results of this paper with a number of benchmark cases of both linear and nonlinear interaction of circular and annular foundation with half‐space. Some new illustrations are presented to portray the aspect of the anisotropy and layering of the half‐space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In the framework of elastostatics, a mathematical treatment is presented for the boundary value problem of the interaction of a flexible cylindrical pile embedded in a transversely isotropic half‐space under transverse loadings. Taking the pile region as a stiffened subdomain of an extended half‐space, the formulation of the interaction problem is reduced to a Fredholm integral equation of the second kind. The necessary set of Green's functions for the transversely isotropic half‐space is obtained by means of a method of potentials. The resulting Green's functions are incorporated into a numerical procedure for the solution of the integral equation. The theoretical response of the pile is presented in terms of bending moment, displacement and slope profiles for a variety of transversely isotropic materials so that the effect of different anisotropy parameters can be meaningfully discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A novel procedure associated with the precise integration method (PIM) and the technique of dual vector is proposed to effectively calculate the magnitude and distribution of deformations in a homogeneous multilayered transversely isotropic medium. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the soil system. The linearly elastic medium is subjected to four types of vertically acting axisymmetric loads prescribed either at the external surface or in the interior of the soil medium. There are no limits for the thicknesses and number of soil layers to be considered. By virtue of the governing equations of motion and the constitutive equations of the transversely isotropic elastic body, and based on the Hankel integral transform and a dual vector formulation in a cylindrical coordinate system, the partial differential motion equations can be converted into first‐order ordinary differential matrix equations. Applying the approach of PIM, it is convenient to obtain the solutions of ordinary differential matrix equations for the continuously homogeneous multilayered transversely isotropic elastic soil in the transformed domain. The PIM is a highly accurate algorithm to solve the sets of first‐order ordinary differential equations, which can ensure to achieve any desired accuracy of the solutions. What is more, all calculations are based on the standard method with the corresponding algebraic operations. Computational efforts can be reduced to a great extent. Finally, numerical examples are provided to illustrate the accuracy and effectiveness of the proposed approach. Some more cases are analyzed to evaluate the influences of the elastic parameters of the transversely isotropic media on the load‐displacement responses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half‐space. On assuming a depth‐independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small‐scale geophysical applications, the model is used to investigate the near‐field effects of ground‐loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform‐pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non‐intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
王国才  陈龙珠 《岩土力学》2004,25(Z2):401-404
用解析的方法首次研究了层状饱和地基上刚性圆板的扭转振动特性.运用Hankel变换求解饱和介质动力问题的控制方程,按混合边值条件建立了层状饱和地基上刚性圆板扭转振动的第二类Fredholm积分方程.数值算例给出了动力柔度系数和扭转角幅值随无量纲频率的变化曲线,与单相弹性及匀质饱和介质情况进行了对比分析,并进行了参数研究.  相似文献   

12.
艾智勇  张逸帆 《岩土力学》2016,37(5):1243-1248
运用对偶积分方程来求解层状横观各向同性地基与墙下条形基础的共同作用问题。从直角坐标平面应变问题控制方程出发,通过傅里叶(Fourier)变换和层间连续性条件,可以得到层状横观各向同性地基的传递矩阵解。基于该传递矩阵解,并利用条形基础与地基接触的混合边值条件,推导出一组关于基础挠度和地基反力的对偶积分方程。考虑墙下条形基础受到竖向集中荷载的情况,利用弹性薄板理论先求解出条形基础挠度;随后应用雅可比(Jacobi)正交多项式和级数展开的方法,将对偶积分方程转化为线性代数方程组进行求解。编制了相应的计算程序,其计算结果与有限元软件ABAQUS的结果基本吻合,从而验证了所提理论的正确性。算例分析表明,板土相对刚度与地基成层性对地基反力、地表沉降和沿z轴竖向正应力有很大的影响。  相似文献   

13.
根据Biot动力控制方程,运用Fourier积分变换技术,并按照混合边值条件和连续条件建立了上覆单相弹性层饱和地基上刚性条形基础竖向振动的对偶积分方程,并将其退化到完全饱和地基的情形。通过引进正交多项式将对偶积分方程化为线性代数方程组,从而得到了上覆单相弹性层的饱和地基上刚性条形基础的竖向振动规律。通过算例分析得到,单相弹性层的厚度对动力柔度系数有着较大的影响,在单相弹性层厚度较小时(小于条形基础半宽的0.1),动力柔度系数曲线与完全饱和的基本重合;完全饱和地基上刚性基础的竖向振动是上覆弹性层厚度Hn=0的特例。  相似文献   

14.
王小岗 《岩土力学》2011,32(1):253-260
研究了横观各向同性饱和土地基在地表动力荷载作用下的三维瞬态响应。基于饱和多孔介质的三维Biot波动理论,利用Laplace变换,建立圆柱坐标系下横观各向同性饱和土的波动方程;解耦波动方程后,根据算子理论,并借助Fourier展开和Hankel变换技术,得到瞬态荷载作用下,饱和土介质的土骨架位移和应力、孔隙水相对位移和孔隙水压力的一般解;利用一般解,给出横观各向同性饱和地基在地表集中荷载激励下的瞬态Lamb问题的解答。数值算例结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的瞬态动力特性。  相似文献   

15.
The dynamic problem of a transversely isotropic multilayered medium is reducible to quasi‐static problem by introducing a moving system that travels synchronously with the load. Based on the governing equations in the moving system, the ordinary differential equations in the Fourier transformed domain are deduced. An extended precise integration method is adopted to solve the ordinary differential equations, and the solution in the physical domain is recovered by the inverse Fourier transform. Numerical examples are performed to verify the accuracy of the presented method and to analyze the influence of material properties and the load characteristic.  相似文献   

16.
基于Biot固结理论,考虑了土体和孔隙流体压缩性,通过对控制方程的解耦,得到在横观各向同性饱和土体中圆形隧洞边界上作用随时间变化的轴对称荷载或流体压力所引起的应力、位移和孔隙水压力场在拉普拉斯变换域中的解析表达式,运用拉普拉斯数值逆变换进行算例分析,得到在时间域中的解,讨论了单级加载和循环加载对计算结果的影响,并与瞬时加载条件下的结果进行了比较。同时也分析了土体的横观各向同性性质对应力、位移和孔隙水压力场的影响。  相似文献   

17.
This paper presents an exact analytical solution to fully coupled axisymmetric consolidation of a semi‐infinite, transversely isotropic saturated soil subjected to a uniform circular loading at the ground surface. The analysis is under the framework of Biot's general theory of consolidation. First, the governing equations of consolidation are transformed into a set of equivalent partial differential equations with the introduction of two auxiliary variables. These partial differential equations are then solved using Hankel–Laplace integral transforms. Once solutions in the transformed domain have been obtained, the actual solutions in the physical domain for displacements and stress components of the solid matrix, pore‐water pressure and fluid discharge can be finally obtained by direct numerical inversion. The accuracy of the numerical solutions developed is confirmed by comparison with an existing exact solution for an isotropic and saturated soil that is a special case of the more general problem addressed. Numerical analyses are also presented to investigate the influence of the degree of material anisotropy on the consolidation settlement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A boundary integral equation method is presented for a rigid cylindrical pipe‐pile of finite length embedded in a transversely isotropic half‐space under lateral loads. In the framework of three‐dimensional elastostatics, the complicated soil‐structure interaction problem is shown to be reducible to three coupled Fredholm integral equations. Through an analysis of the associated Cauchy singular kernels, the intrinsic singular characteristics of the radial, angular, and vertical interfacial load transfers are rendered explicit. By means of a complicated numerical procedure, detailed results on the three‐dimensional load–transfer process are provided for benchmark comparison and practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of a massless, rigid disc vibrating harmonically on a ‘constrained’ transversely isotropic elastic half space is considered. The material is called constrained because it is assumed that the elastic constants satisfy a certain equation. The problem for each mode of vibration is reduced to the solution of a Fredholm integral equation of the second kind. Results are presented to show the general effect of the material anisotropy.  相似文献   

20.
This work presents analytical solutions for displacements caused by three‐dimensional point loads in a transversely isotropic full space, in which transversely isotropic planes are inclined with respect to the horizontal loading surface. In the derivation, the triple Fourier transforms are employed toyield integral expressions of Green's displacement; then, the triple inverse Fourier transforms and residue calculus are performed to integrate the contours. The solutions herein indicate that the displacements are governed by (1) the rotation of the transversely isotropic planes (?), (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′), (3) the geometric position (r, φ, ξ) and (4) the types of loading (Px, Py, Pz). The solutions are identical to those of Liao and Wang (Int. J. Numer. Anal. Methods Geomechanics 1998; 22 (6):425–447) if the full space is homogeneous and linearly elastic and the transversely isotropic planes are parallel to the horizontal surface. Additionally, a series of parametric study is conducted to demonstrate the presented solutions, and to elucidate the effect of the aforementioned factors on the displacements. The results demonstrate that the displacements in the infinite isotropic/transversely isotropic rocks, subjected to three‐dimensional point loads could be easily determined using the proposed solutions. Also, these solutions could realistically imitate the actual stratum of loading situations in numerous areas of engineering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号