首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
下列情况应测量雪压: ①每月逢5、10、15、20、25和月末最后一天08时雪深≥5 cm时,应在雪深观测后测雪压; ②在规定的日子里08时无积雪,而在08时以后形成雪深≥5 cm的积雪,在14时或20时补测雪深后测雪压; ③在规定的日子里未达到测雪压标准,而在随后的其它日子(指两次规定日子之间的日子),08时测得的雪深≥5 cm时,应在雪深观测后补测雪压; ④在规定的日子里未达到测雪压标准,在随后的日子里08时也无积雪,而在该日08时以后降雪,且雪深≥5 cm,应在该日14时或20时补测雪深后补测雪压;  相似文献   

2.
孙晓辉 《浙江气象》2007,28(4):17-19
叙述了降雪的性质与云状栏的记录对应关系;大雪引起积雪对雪深、雪压的观测、补测、发报的一些规定理解;因纯大雪引起使能见度<0.5 km时,对大雪的发报与能见度的对应关系;对降雪、积雪时的仪器维护及是否正常运转判断的一些方法。  相似文献   

3.
以新疆塔城基准站自动气象站2006年11月—2010年3月积雪深度≥0cm的451天为样本,对0cm地面温度、雪面(草面)温度、气温及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度、雪(草)面温度与气温的关系,结果显示:雪(草)面温度在积雪期,变化趋势与气温一致,受云量及日照时数影响明显,平均雪温低于平均气温;地温随雪深变化有20cm和50cm两个分界点,雪深≤20cm时,地温受雪深、气温影响较大,变化趋势与气温基本一致,地温高于气温,雪层较薄时,受云量和日照影响较明显。雪深超过20cm时,地温变幅趋向定值,地温变化仅受长时间温度变化影响,且不低于-5℃;雪深超过50cm时,地温趋于定值(-1℃)。  相似文献   

4.
王秀琴  卢新玉  王金风 《气象科技》2013,41(6):1068-1072
基于新疆昌吉州5个国家气象站2008—2010年积雪深度大于等于0 cm的实测地面温度与雪面温度,对0 cm地面温度(含最高、最低)、雪面温度(含最高、最低)及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度与雪面温度的关系,并以阜康市天池气象站2011年所有积雪日数据对关系模型作检验。结果显示:地面温度与雪面温度的关系有3个雪深分层:5 cm以下、6~40 cm和40 cm以上,积雪深度为0~5 cm时,地面温度与雪面温度差值很小,受雪深及天气条件影响明显,雪深6~40 cm,主要受雪深影响,雪深超过40 cm,地面温度趋于定值。  相似文献   

5.
常槐花 《气象》2005,31(5):87-87
在墒情观测地段有积雪存在时应如何取土测墒?据笔者调查,多数台站遇此情况是采取扒雪照常取土的方式,个别台站是等积雪融化以后采取补测取土方式。由此可见理解执行规范的不一致。笔者更赞同后一种做法,理由如下:  相似文献   

6.
地面温度测定的是地表与空气交界面的温度,冬季有积雪时测定的是雪面与空气交界面的温度。在观测工作中,发现冬季地温场有积雪时,14时观测地温有时会出现0cm温度表读数与地面最高温度表读数差值较大的现象。经反复观测,发现是由于地面温度表经过太阳直射,感应部分的积雪融化,与地面脱离,造成0 cm温度表与地面最高温度表读数均迅速上升。观测前30分钟巡视仪器时,因发现温度表下陷雪内,便重新埋放,使0cm温度表感应部分与雪面重新接触,温度迅速下降,而地面最高温度表则不会下降,这就造成了上述情况。 建议在冬季有积…  相似文献   

7.
徐福兴 《气象》1990,16(7):18-18
地面观测规范在地温一章中规定:地面最低温度表于每日20时观测一次。夏季高温日子里,为防止地面最低温度表失效,应在早上温度上升后观测一次,并记入观测薄08时栏,同时应收回室内。若遇雷雨天气,因可能有显著降温,应提前放回原处,以免漏测最低地温。又在规范107页无自记仪器项目中规定:2时地面温度用1/2(当日地面最  相似文献   

8.
高洪 《河南气象》2002,(4):46-46
冬季在降雪或有积雪的日子 ,若不注意 ,会产生地面最高温度失真的情况。本站曾出现过 1月份 1 4时 0cm温度比该日地面最高温度高 2 .7℃的现象 ,致使该日地面最高温度失真。分析原因 ,由于降雪 ,表身完全被大雪埋住 ,此时的温度示值不是雪面与空气的交界面温度 ,当积雪逐渐融化 ,表身下陷雪中 ,或积雪融化后 ,没有及时安置好温度表 ,其感应部分与土壤没有密贴 ,这时地温表测得的温度也不真实。因此遇到特殊天气 ,要增加巡视仪器的次数。积雪天巡视仪器时 ,均应将表小心从雪中取出 ,放置在雪面上 ,使表身紧贴雪面。雪面开始融化 ,应注意重…  相似文献   

9.
罗荻 《气象》1991,17(7):2-2
地面最低温度表的使用,在《规范》中规定:“在夏季高温的日子里,为防止地面最低温度表失效,应在早上温度上升后观测一次地面最低温度,记入观测薄8时栏,随后将地面最低温度表收回,并使其感应部分向下,妥善立放室内或置于阴蔽处。20时观  相似文献   

10.
1 观测记录环节每时次正点观测前 2 min,观测人员应注意巡视 RYJ记录仪灯走情况和 PC-1 50 0微机屏显数字情况。正点打印时观测员应在场 ,若打印机不正常 (暂停打印状态下 ) ,屏显五组数据正常 ,应及时读取 E值补记在打印纸上 ,若屏显数字异常 ,应用毫伏表在 6.3 mm耳机插头或室外总表输出两端上进行补测 ,并注意毫伏表档位应拨在 2 0 0 mv档上 ,正负极不要错接 ,补测记录应据补测时限的规定来选择正确的处理方法并加以备注。坚决杜绝责任心不强造成记录缺测或错测的事故发生。2 逐日记录预审环节2 .1 总辐射日变化的预审一般晴好天空…  相似文献   

11.
1 引言 在地面气象观测中,雪压的观测比较特殊,比较繁琐。冬季降雪达到观测标准时,在规定的时间内观测员必须反复操作测量工具和读数。是一个比较长的观测过程。由于观测次数少,而且每次雪深都不一样.使得雪压前后对比观测比较困难.往往会造成观测数据出现误差。在实际观测中总结经验,认为从以下几个方面人手。能保证雪压观测数据的正确性。  相似文献   

12.
以能量平衡方程为基础,考虑太阳短波辐射、大气和地面的长波辐射、潜热、感热传输以及下垫面的热传导等能量之间的平衡,建立了利用常规气象观测资料预测雪面温度和积雪深度变化的融雪模型。利用2009年1—3月以及2009年12月—2010年1月在湖北恩施雷达站的积雪观测数据进行模拟和验证,结果表明:该模型对于雪面温度和积雪深度都有较好的模拟效果。当下垫面导热系数λg〈0.5时,下垫面对雪深的影响很小;当λg≥0.5时,积雪融化速度随λg的增大而加快,说明下垫面的热传导是影响积雪深度变化的主要因素之一。  相似文献   

13.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

14.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   

15.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   

16.
青藏高原积雪监测在地球辐射平衡、全球气候变化和生态环境等方面有重要作用,对气候预测、雪灾预测等具有重要意义。FY-4(风云4号)卫星数据具有高时空分辨率的优势,基于FY-4A(风云4号A星)构建积雪监测方法与模型,不仅拓展了静止卫星应用领域,也丰富了积雪监测应用的手段。FY-4的高时间分辨率为积雪监测的研究提供了分钟级数据,对积雪与云的变化掌握的更为细致,但用于积雪监测的波段,因分辨率不高容易导致错判与漏判。本文基于2020年小时级野外地面雪深观测数据、风云3号D星积雪覆盖产品(FY-3D_SNC)数据,构建了基于归一化积雪指数(Normalized Difference Snow Index,NDSI)的FY-4A卫星积雪判识方法,提出了雪深监测模型与等级划分指标。结果表明:NDSI≥0.20是青藏高原地区FY-4A卫星积雪判识的适用阈值,无论有云或无云条件,其漏判率均低于8.0%。地面站点验证结果表明,积雪判识准确率达83.33%以上。空间范围内直接剔除云区后,积雪判识经混淆矩阵验证准确率在82.48%以上。因此,FY-4A卫星在青藏高原地区具有积雪监测的能力。虽然FY-4A卫星对超过10 cm以上雪深不具备区分能力,但可以较好地识别10 cm以下浅雪雪深,相关系数达到0.745,〖JP3〗通过了0.001显著性水平检验。据此建立的FY-4A卫星0~10 cm雪深等级指标,总体分级精度达到87.50%。FY-4A卫星雪深反演方法在青藏高原地区对0~10 cm浅雪雪深有较好的估算能力。  相似文献   

17.
1.百叶箱是安置测定温、湿仪器用的防护设备。它的作用是防止太阳对仪器的直接辐射和地面对仪器的反射辐射,保护仪器免受强风、雨、雪等影响,并使仪器感应部份有适当的通风,能真实地感应外界空气温度和湿度变化。2.①若溶冰不恰当,凡在定时观测正点前进行补测的,该时的湿度记录用干湿球补测值查算,气温仍以第一次干球观测值为正式记录。②凡在定时观测正点后进行补测的,则改用湿度计定时值(用规范规定的压、温订正法订正),配合第一次干球记录反查得出该时湿度记录(遇上发报时,湿度计可先借用前次观测的器差值进行订正,只作编报用)。  相似文献   

18.
根据山东省气象局观测与网络处要求,山东省各地面气象观测站在冬季遇有降水时,应在06时按规定编发06—06时降水量,出现积雪现象时还应同时编发积雪深度。为此,肥城局编写了带有编报传输功能的软件,观测员只需输入降水量、雪深两项内容,软件将自动生成规定格式的降水报。文章从软件的开发环境、软件功能、报文格式、界面设计、操作流程、注意事项等方面做了详细介绍。  相似文献   

19.
中国西天山季节性积雪热力特征分析   总被引:3,自引:0,他引:3  
高培  魏文寿  刘明哲 《高原气象》2012,31(4):1074-1080
利用中国天山积雪雪崩站干、湿雪雪层内每隔5min一次的10层雪温数据,探讨了一次降雪过程后干、湿雪的雪层温度特征,对比分析了干、湿雪的雪面能量平衡方程中各分量的差异。结果表明:(1)整个冬半年积雪各层温度基本<0℃,雪温日变化振幅由雪面向下逐渐减小,积雪深层温度的波峰(谷)值稍滞后于积雪浅层温度极值1~2天。(2)湿雪冷中心的出现时间早于干雪,暖中心的出现时间晚于干雪,太阳辐射对湿雪的穿透深度大于干雪。(3)雪层温度振幅变化与能量吸收随雪深都呈指数衰减分布。积雪密度越大,吸收系数越小,穿透深度越大。(4)干雪雪面的感热通量和潜热通量几乎都为负值,积雪积累。湿雪雪面的潜热通量与感热通量方向相反,互相抵消,所以净辐射是导致湿雪消融的主要因素。  相似文献   

20.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0  
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号