首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a single-day global dataset produced by NCAR's Community Atmospheric Model (CAM) with a 2-D Cloud Resolving Model (CRM) installed in each column. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes (global error 4 W m−2 for reflected flux), largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller (global error 2 W m−2 for outgoing flux) for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily averaged zonal errors always less than 0.3 K/day for SW and 0.6 K/day for LW heating (cooling) rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity based on the Gamma Weighted Two Stream Approximation (GWTSA).These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst case scenarios, and that current radiative transfer algorithms in General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of our particular CORAMs are small, they seem to be systematic, and their impact can be fully assessed only with GCM climate simulations.  相似文献   

2.
Based on data collected during the first U.S.Department of Energy(DOE) Atmospheric Radiation Measurement(ARM) field campaigns at Shouxian,eastern China in 2008,the effects of clouds and aerosols on the surface radiation budget during the period October-December 2008 were studied.The results revealed that the largest longwave(LW),shortwave(SW),and net Aerosol Radiative Effects(AREs) are 12.7,-37.6,and-24.9 W m-2,indicating that aerosols have LW warming impact,a strong SW cooling effect,and a net cooling effect on the surface radiation budget at Shouxian during the study period 15 October-15 December 2008.The SW cloud radiative forcing(CRF) is-135.1 W m-2,much cooler than ARE(about 3.6 times),however,the LW CRF is 43.6 W m-2,much warmer than ARE,and resulting in a net CRF of-91.5 W m-2,about 3.7 times of net ARE.These results suggest that the clouds have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs.The net surface radiation budget is dominated by SW cooling effect for both ARE and CRF.Furthermore,the precipitatable clouds(PCs) have the largest SW cooling effect and LW warming effect,while optically thin high clouds have the smallest cooling effect and LW warming on the surface radiation budget.Comparing the two selected caseds,CloudSat cloud radar reflectivity agrees very well with the AMF(ARM Mobile Facility) WACR(W-band ARM Cloud Radar) measurements,particularly for cirrus cloud case.These result will provide a ground truth to validate the model simulations in the future.  相似文献   

3.
Summary Satellite-derived datasets are used to verify the cloud cover and radiation field generated by a T62 (horizontal resolution) version of the operational global model at the National Meteorological Centre (NMC). An ensemble of five day forecasts for July 1985 is used, as well as 30 day climatological forecasts for July 1985, October 1985, January 1986, and April 1986.Monthly averages of radiation fields are compared with Earth Radiation Budget Experiment (ERBE) data. For the four months examined, clear-sky outgoing longwave radiation (clear-sky OLR) and absorbed shortwave radiation (clear-sky SW) tend to agree roughly with ERBE. Model global mean OLR, however, exceeds that of ERBE by 10 W m–2.Comparison of effective cloud cover to corresponding fields cataloged by the International Satellite Cloud Climatology Project (ISCCP C1) reveals deficiencies in the amount of supersaturation cloudiness and the vertical distribution of convective clouds. Large inaccuracies in model radiation fields are closely related to deficiencies in the cloud parameterization. An inventory of model cloudiness, in comparison to satellite data, is conducted.With 18 Figures  相似文献   

4.
长波辐射对大气变化的敏感性和在WRF模式中的应用检验   总被引:8,自引:2,他引:8  
用RRTM长波辐射 (LWR)参数化方案测试了LWR对大气变化的敏感性。结果表明 :高云对向外长波辐射(OLR)、30 0和 5 0 0hPa净LWR通量的减弱作用较中、低云大 ;低云对 85 0hPa和地表净LWR通量的减弱作用较中、高云大。在云层中 ,LWR冷却率受云影响最大 ;在云层下方 ,云对LWR的影响迅速减小 ;而在云层上方 ,冷却率几乎不受云的影响。当水汽含量减少或增加时 ,地表向下LWR受到相应减弱或增强 ,而净LWR则在一定程度上受到相应增强或减弱 ,并且越接近地面 ,受到水汽变化的影响就越大。O3 对LWR的影响相对云和水汽来说是比较小的。文中介绍了在WRF模式中应用RRTM方案预报LWR不同季节的 2个个例 ,给出了应用NCEP/AVN分析资料预报和验证中国范围 2d之内LWR通量的模拟结果。试验表明 ,OLR和 5 0 0hPa净LWR通量与高度形势场有较好的对应关系 ,而地表净LWR很大程度上还受到地形的影响。  相似文献   

5.
Aerosol–cloud–radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations.Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity(typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.  相似文献   

6.
 This study performs a comprehensive feedback analysis on the Bureau of Meteorology Research Centre General Circulation Model, quantifying all important feedbacks operating under an increase in atmospheric CO2. The individual feedbacks are analysed in detail, using an offline radiation perturbation method, looking at long- and shortwave components, latitudinal distributions, cloud impacts, non-linearities under 2xCO2 and 4xCO2 warmings and at interannual variability. The water vapour feedback is divided into terms due to moisture height and amount changes. The net cloud feedback is separated into terms due to cloud amount, height, water content, water phase, physical thickness and convective cloud fraction. Globally the most important feedbacks were found to be (from strongest positive to strongest negative) those due to water vapour, clouds, surface albedo, lapse rate and surface temperature. For the longwave (LW) response the most important term of the cloud ‘optical property’ feedbacks is due to the water content. In the shortwave (SW), both water content and water phase changes are important. Cloud amount and height terms are also important for both LW and SW. Feedbacks due to physical cloud thickness and convective cloud fraction are found to be relatively small. All cloud component feedbacks (other than height) produce conflicting LW/SW feedbacks in the model. Furthermore, the optical property and cloud fraction feedbacks are also of opposite sign. The result is that the net cloud feedback is the (relatively small) product of conflicting physical processes. Non-linearities in the feedbacks are found to be relatively small for all but the surface albedo response and some cloud component contributions. The cloud impact on non-cloud feedbacks is also discussed: greatest impact is on the surface albedo, but impact on water vapour feedback is also significant. The analysis method here proves to be a␣powerful tool for detailing the contributions from different model processes (and particularly those of the clouds) to the final climate model sensitivity. Received: 15 June 2000 / Accepted: 10 January 2001  相似文献   

7.
Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.  相似文献   

8.
应用辐射平衡原理计算夏季水泥路面温度   总被引:12,自引:0,他引:12       下载免费PDF全文
应用能量守恒方法, 考虑太阳短波辐射、大气和地面的长波辐射 (辐散) 潜热、感热传输等能量之间的平衡, 并考虑水汽、气溶胶、浮尘以及云等对太阳短波辐射的吸收和散射, 建立了一种较实用的路面温度预报模型。应用南昌市自动气象观测站2002年7月26日至8月24日共30 d逐时的各气象要素资料进行模拟分析, 并与该时段内所测到的水泥路面温度进行对比, 发现:当夏季日照时间超过5 h时, 水泥路面最高温度预报最大误差 < 4 ℃, 多日误差绝对值平均为2.13 ℃, 该模型具有较好的实际应用价值; 但当雨日或无日照时, 结果较差。  相似文献   

9.
Based on the data of recent high-accuracy measurements of the incoming fluxes of short-wave radiation in 2004–2006 in the Atlantic, errors of existing short-wave radiation parametrizations are estimated. It is shown that the largest errors occur under large cloud amount. A parametrization scheme is proposed that takes into account not only total cloudiness, but also morphological types of clouds. The scheme improves parametrization under large cloud amount.  相似文献   

10.
Ground-based measured solar radiation fluxes are used to derive simultaneously cloud water content and cloud fraction cover. In this paper we present a new method for prognostically inferring cloud microphysical properties based on previous work of Chou and Suarez. A look up table method combined with simulated annealing process is associated with the Chou and Suarez radiation transfer model called CLIRAD-SW. This model which is of great sensitivity has been validated for several atmospheres. Calculations here are conducted for an equivalent period of one year of measurement realized by the MINREST-LRE program for the Yaoundé meteorological station during the year 1984 and are focused on the previously derived average solar days similar to those proposed by Klein and more representative of the monthly solar radiation profile. In order to reduce computational time, mean values of liquid, mixed phase and ice cloud effective radius are used according to those proposed by Chou M.D. As part of our retrieving method, diffuse and global fluxes calculated for each set of cloud and aerosol microphysical characteristics are compared with the fluxes measured during the corresponding period. The obtained results are in very good agreement with those fluxes with relative errors ranging from 0.001% to 1.9% for diffuse flux and from 0.0009% to 2% for global flux. Mean cloud fraction profile obtained was generally well correlated with seasons whereas the correlation of cloud water content with seasons was not very good. However, the characteristic trend was in good agreement with the change in seasons. The overall agreement observed suggests that the method is capable of characterizing cloud water content and fraction for the given period of the day and the year although the lack of in situ measurements was a limitation for a valuable verification of the accuracy of the method.  相似文献   

11.
Cloud–radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects (CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia (CA), East Asia (EA), and North America (NA), based on recent satellite datasets. Our results show that the annual mean shortwave (SW) and net CREs (SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months (November–March), the longwave (LW) CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere–land surface system. The cold-season mean NCRE at the top of the atmosphere (TOA) averaged over EA is 4.1 W m–2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud–radiation processes over arid regions of the Northern Hemisphere.  相似文献   

12.
Solar Radiation Climatology of Alaska   总被引:1,自引:1,他引:0  
Summary There are only six locations in Alaska for which global radiation data of more than a year in duration are available. This is an extremely sparse coverage for a state which covers 1.5×10&6 km2 and stretches over at least three climatic zones. Cloud observations are, however, available from 18 stations. We used fractional cloud cover and cloud type data to model the global radiation and thus obtain a more complete radiation coverage for Alaska. This extended data set allowed an analysis of geographic and seasonal trends. A simple 1-layer model based on Haurwitz’s semi-empirical approach, allowing for changes in cloud type and fractional coverage, was developed. The model predicts the annual global radiation fluxes to within 2–11% of the observed values. Estimated monthly mean values gave an average accuracy within about 6% of the measurements. The estimates agree well with the observations during the first four months of the year but less so for the last four. Changing surface albedo might explain this deviation. Previously, the 1993 National Solar Radiation Data Base (NSRDB) from the National Renewable Energy Laboratory (NREL) modeled global radiation data for 16 Alaskan stations. Although more complete and complex, the NREL model requires a larger number of input parameters, which are not available for Alaska. Hence, we believe that our model, which is based on cloud-radiation relationship and is specifically tuned to Alaskan conditions, produces better results for this region. Annual global solar radiation flux measurements are compared with results from global coverage models based on the International Satellite Cloud Climatology Project (ISCCP) data. Contour plots of seasonal and mean annual spatial distribution of global radiation for Alaska are presented and discussed in the context of their climatic and geographic settings. Received July 16, 1997 Revised May 18,1998  相似文献   

13.
Based on near-term climate simulations for IPCC-AR5 (The Fifth Assessment Report), probabilistic multimodel ensemble prediction (PMME) of decadal variability of surface air temperature in East Asia (20°-50 °N, 100°-145°E) was conducted using the multivariate Gaussian ensemble kernel dressing (GED) methodology. The ensemble system exhibited high performance in hindcasting the decadal (1981-2010) mean and trend of temperature anomalies with respect to 1961-90, with a RPS of 0.94 and 0.88 respectively. The interpretation of PMME for future decades (2006-35) over East Asia was made on the basis of the bivariate probability density of the mean and trend. The results showed that, under the RCP4.5 (Representative Concentration Pathway 4.5 W m-2 ) scenario, the annual mean temperature increases on average by about 1.1-1.2 K and the temperature trend reaches 0.6-0.7 K (30 yr)-1 . The pattern for both quantities was found to be that the temperature increase will be less intense in the south. While the temperature increase in terms of the 30-yr mean was found to be virtually certain, the results for the 30-yr trend showed an almost 25% chance of a negative value. This indicated that, using a multimodel ensemble system, even if a longer-term warming exists for 2006-35 over East Asia, the trend for temperature may produce a negative value. Temperature was found to be more affected by seasonal variability, with the increase in temperature over East Asia more intense in autumn (mainly), faster in summer to the west of 115°E, and faster still in autumn to the east of 115°E.  相似文献   

14.
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

15.
On tropospheric adjustment to forcing and climate feedbacks   总被引:1,自引:1,他引:0  
Motivated by findings that major components of so-called cloud ??feedbacks?? are best understood as rapid responses to CO2 forcing (Gregory and Webb in J Clim 21:58?C71, 2008), the top of atmosphere (TOA) radiative effects from forcing, and the subsequent responses to global surface temperature changes from all ??atmospheric feedbacks?? (water vapour, lapse rate, surface albedo, ??surface temperature?? and cloud) are examined in detail in a General Circulation Model. Two approaches are used: applying regressions to experiments as they approach equilibrium, and equilibrium experiments forced separately by CO2 and patterned sea surface temperature perturbations alone. Results are analysed using the partial radiative perturbation (??PRP??) technique. In common with Gregory and Webb (J Clim 21:58?C71, 2008) a strong positive addition to ??forcing?? is found in the short wave (SW) from clouds. There is little evidence, however, of significant global scale rapid responses from long wave (LW) cloud, nor from surface albedo, SW water vapour or ??surface temperature??. These responses may be well understood to first order as classical ??feedbacks????i.e. as a function of global mean temperature alone and linearly related to it. Linear regression provides some evidence of a small rapid negative response in the LW from water vapour, related largely to decreased relative humidity (RH), but the response here, too, is dwarfed by subsequent response to warming. The large rapid SW cloud response is related to cloud fraction changes??and not optical properties??resulting from small cloud decreases ranging from the tropical mid troposphere to the mid latitude lower troposphere, in turn associated with decreased lower tropospheric RH. These regions correspond with levels of enhanced heating rates and increased temperatures from the CO2 increase. The pattern of SW cloud fraction response to SST changes differs quite markedly to this, with large positive radiation responses originating in the upper troposphere, positive contributions in the lowest levels and patterns of positive/negative contributions in mid latitude low levels. Overall SW cloud feedback was diagnosed as negative, due to the substantial negative SW feedback in cloud optical properties more than offsetting these. This study therefore suggests the rapid response to CO2 forcing is (apart from a possible small negative response from LW water vapour) essentially confined to cloud fraction changes affecting SW radiation, and further that significant feedbacks with temperature occur in all cloud components (including this one), and indeed in all other classically understood ??feedbacks??.  相似文献   

16.
发展了一个计算非均一大气条件下太阳辐射通量的一个简单而又精确的模式,其中包括关于大气球反射率与透过率的一个参数化表达式,并引入加权一次散射反照率和加权不对称因子,用于拟合非均一大气条件下计算辐射通量的四个经验订正因子。对清洁和浑浊的两类大气,都具有120060组的辐射通量模拟试验,以检验本模式的精度。这些模拟试验覆盖0-50的云光学厚度、0-0.8地表反射率、Junge和对数正态的气溶胶谱分布、-0.05气溶胶折射率虚部。在均一大气条件下,由本模式计算的120060组向上通量的标准差对清洁和浑浊两类大气分别为1.08%和1.04%;而向下通量的标准差分别为4.12%和3.31%。在非均一大气条件下,由本模式计算的向上通量的标准差对清洁和浑浊两类大气分别为3.01%和3.48%;而向下通量的标准差分别为4.54%和4.89%,其精度远优于均一假设下的计算结果。  相似文献   

17.
《Atmospheric Research》2008,87(3-4):225-240
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

18.
A simple yet more accurate semiempirical model is developed to calculate solar radiative flux in the optically inhomogeneous atmosphere. In the model a parameterized expression of spherical reflectance and transmitance of the atmosphere is confirmed, and the weighted single scatter albedo and weighted asymmetric factor are introduced to fit four empirical correction factors responsible for radiative fluxes in the inhomogeneous atmosphere. For both clean and turbid models, there are 120060 sets of radiative flux simulations for accuracy checks of the model, which cover 0-50 cloud optical depths, 0-0.8 surface reflectance, Junge and Log-normal aerosol size distributions, and 0-0.05 imaginary parts of aerosol refractive indexes. In case of the homogeneous atmosphere, standard errors of the 120060 upward fluxes from the present model are 1.08% and 1.04% for clean and turbid aerosol models, respectively; and those of the downward fluxes are 4.12% and 3.31%. In case of the inhomogeneous atmosphere, standard errors of the upw ard fluxes from the present model are 3.01% and 3.48% for clean and turbid aerosol models.respectively; and those of the downward fluxes are 4.54% and 4.89%, showing a much better accuracy than the results calculated by using an assumption of the homogeneous atmosphere.  相似文献   

19.
 A simple theoretical model of atmospheric radiative equilibrium is solved analytically to help understand the energetics of maintaining Earth's tropical and subtropical climate. The model climate is constrained by energy balance between shortwave (SW) and longwave (LW) radiative fluxes. Given a complete set of SW and LW optical properties in each atmospheric layer, the model yields a unique equilibrium-temperature profile. In contrast, if the atmospheric temperature profile and SW properties are prescribed, the model yields essentially two distinct LW transmissivity profiles. This bimodality is due to a nonlinear competition between the ascending and descending energy fluxes, as well as to their local conversion to sensible heat in the atmosphere. Idealized slab models that are often used to describe the greenhouse effect are shown to be a special case of our model when this nonlinearity is suppressed. In this special case, only one solution for LW transmissivity is possible. Our model's bimodality in LW transmissivity for given SW fluxes and temperature profile may help explain certain features of Earth's climate: at low latitudes the temperature profiles are fairly homogeneous, while the humidity profiles exhibit a bimodal distribution; one mode is associated with regions of moist-and-ascending, the other with dry-and-subsiding air. The model's analytical results show good agreement with the European Centre for Medium-Range Weather Forecasts' reanalysis data. Sensitivity analysis of the temperature profile with respect to LW transmissivity changes leads to an assessment of the low-latitude climate's sensitivity to the “runaway greenhouse” effect. Received: 7 December 1999 / Accepted: 19 February 2001  相似文献   

20.
2014年长江流域三次暴雨过程卫星云图释用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用实况探空资料和风云2C、2D卫星探测资料,对2014年7月西太平洋副高与西风带低槽共同作用下长江流域出现的三次暴雨过程进行分析,将三次过程卫星云图以及各种物理要素场配置进行对比,得到以下结论。云系表现为典型的梅雨锋云系特征,云系位于高空槽前580线与副高外围588线之间。降水云带由对流云团、稳定性降水云团及混合性降水云带三部分组成。梅雨锋中的MCC云团十分活跃。随着云团最强对流的逐渐减弱,云团面积迅速膨胀,并持续数小时后很快减小,强降水主要发生在云团发展和成熟期中。强降水还与对流有关,降水强度总体上跟TBB强度呈反相关,TBB越低降水越强。梅雨锋云系的分布与各层的垂直速度场、涡度场、散度场有很好的对应关系,与中高层的涡度平流场也有较好的对应关系,云带总体位置与上升运动区、低层辐合和高层辐散区、正涡度平流区位置近乎重叠。比湿通量、比湿通量散度和假相当位温等温湿参量的分布特征能很好锋面云带的移动、发展和分布特征。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号