首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

2.
The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Åreskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.  相似文献   

3.
The Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de Dôme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations.  相似文献   

4.
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H2O2 and NH3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud.In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron–Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron–Findeisen process when acting also in natural clouds.  相似文献   

5.
A new two-moment warm bulk scheme has been developed including explicitly nucleation and impaction scavenging of aerosol particles as well as all other microphysical processes. The scheme is built upon a quasispectral representation of the aerosol particle, cloud droplet and raindrop distributions. It predicts mixing ratios and number concentrations for each category. Each process is treated explicitly and independently to establish an analytic expression for each contribution for the time-dependant microphysical equations. The scheme has been tested in the dynamical framework of a two-dimensional kinematic model, developed for the Hawaiian Rainband Project (HaRP, 1990). In this frame, the scheme has performed reasonably well compared to the observations as well as to other similar parameterization schemes, and to the spectral model DESCAM.Sensitivity tests demonstrate the great sensitivity of the scheme to the initial aerosol spectrum characteristics. Moreover, they have also shown its capability to calculate nucleation and impaction scavenging and to follow the taken up particle mass in the cloud and raindrop spectra until the deposition on the ground by the rain.Therefore, the parameterization offers a possibility of treating the evolution of the liquid phase of the cloud together with the aerosol particle scavenging. However, due to the severe limitations of a two-dimensional kinematic model, the scheme needs to be further validated in a three-dimensional dynamical model.  相似文献   

6.
Nucleation scavenging and the formation of a cloud interstitial aerosol (CIA) were theoretically studied in terms of the chemical composition of atmospheric aerosol particles. For this study, we used our air-parcel cloud model, which includes the entrainment of air and detailed microphysics, for determining the growth and interaction of aerosol particles and drops. Maritime and remote continental aerosol particle spectrums were used whose size distributions were superpositions of three log-normal distributions, each of a prescribed chemical composition. Our results show (1) that the CIA exhibits a size distribution with a distinctive cut-off at a specific radius of the dry as well as of the wet particle size distribution. All particles above this limiting size become activated to cloud drops and, thus, are not present in the CIA spectrum. This limiting size was found to be independent of the chemical composition of the particles and only dependent on the prevailing supersaturation. Below this specific size, the CIA spectrum becomes depleted of dry aerosol particles in a manner which does depend on their chemical composition and on the supersaturation in the air. (2) The number of aerosol particles nucleated to cloud drops depends critically on the chemical composition of the particles and on the prevailing supersaturation.  相似文献   

7.
The interpretation of the physico-chemical processes in clouds is facilitated by segregating in situ cloud elements from their carrier gas and small particles (interstitial aerosol). Thus, the present study focuses on the quantitative phase segregation of interstitial air from cloud phase by two complementary samplers with microphysical on-line analysis of the separated phases. An improved counterflow virtual impactor (CVI) was developed for the collection and subsequent evaporation of the condensed phase, releasing dissolved gaseous material and residual particles. This sampler operates in the size range of few micrometers up to 50 μm in cloud element diameter and is matched by an interstitial Round Jet Impactor sampling the gas phase with interstitial particles. Calibrations of both samplers verified the calculated cut sizes D50 of 4, 5, and 6 μm and quantified the slope of the collection efficiency curves. Until this study no direct CVI measurements of the residual particle sizes far below the diameter of 0.1 μm were available. For the first time a CVI was connected to a Differential Mobility Particle Sizer (DMPS) scanning between 25 nm and 850 nm, thus, including the entire Aitken mode in the residual size analysis. Cloud studies on the Puy de Dôme, France, revealed residual particle sizes including Aitken mode (diameter D<100 nm) and accumulation mode (D>100 nm). A major feature of the CVI data is expressed by the fact that despite incomplete incorporation of accumulation mode particles in cloud elements there are contributions of particles with diameters smaller than 0.1 μm to the number of residual particles. Cloud entrainment from height levels above the maximum supersaturation as wells as the size-dependent chemical composition of the aerosol population most likely produced the S-shaped size-dependent partitioning of residual particles. Compared to earlier studies the 50% partitioning diameters dropped significantly below 100 nm to roughly 70 nm.  相似文献   

8.
In November 1993 an airborne field study was performed in order to investigate the microphysical and radiative properties of cooling tower water clouds initiated by water vapour emissions and polluted by the exhaust from coal-fired power plants. The number-median diameter of the droplet size distributions of these artificial clouds was in the range of 13 μm. The concentration of smaller droplets (diameters dD < 10 μm) increased with height and horizontal distance from the cooling towers. Close to the cooling towers, bimodal spectra were found with a second mode at 19 μm. The liquid water content (LWC) ranged between 2 and 5 g/m3 and effective droplet radii (Re) between 6 and 9 μm were measured. LWC and Re decreased with altitude, whereas the droplet concentration (ND) remained approximately constant (about 2000 cm−3 ). An enrichment of interstitial aerosol particles with particle diameters (dp) smaller 0.2 μm compared to the power plant plume in the vicinity of the clouds was observed. Particle activation for dm > 0.3 μm. was evident, especially in cooling tower clouds further apart and separated from their sources. Furthermore, radiation measurements were performed, which revealed differences in the vertical profiles of downwelling solar and UV radiation flux densities inside the clouds.The effective droplet radius Re was parameterized in terms of LWC and ND using equations known from literature. The close agreement between measured and parameterized Re indicates a similar coupling of Re, LWC and ND as in natural clouds.By means of Mie calculations, volume scattering coefficients and asymmetry factors are derived for both the cloud droplets and the aerosol particles. For the cloud droplets, the optical parameters were described by parameterizations from the literature. The results show, that the link between radiative and microphysical properties of natural clouds is not changed by the extreme pollution of the artificial clouds.  相似文献   

9.
A model with spectral microphysics was developed to describe the scavenging of nitrate aerosol particles and HNO3 gas. This model was incorporated into the dynamic framework of an entraining air parcel model with which we computed the uptake of nitrate by cloud drops whose size distribution changes with time because of condensation, collision-coalescence and break-up. Significant differences were found between the scavenging behavior of nitrate and our former results on the scavenging behavior of sulfate. These reflect the following chemical and microphysical differences between the two systems:
  1. nitrate particles occur in a larger size range than sulfate particles.
  2. HNO3 has a much greater solubility than SO2 and is taken up irreversibly inside the drops in contrast to SO2.
  3. nitric acid in the cloud water is formed directly on uptake of HNO3 gas whereas on uptake of SO2 sulfuric acid is formed only after the reaction with oxidizing agents such as e.g., H2O2 or O3.
  4. nitrate resulting from uptake of HNO3 is confined mainly to small drops, whereas sulfate resulting from uptake of SO2 is most concentrated in the largest, oldest drops, which have had the greatest time for reaction.
Sensitivity studies showed that the nitrate concentration of small drops is significantly affected by the mass accommodation coefficient.  相似文献   

10.
The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C3H8, CO2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron–Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1–6.7, as compared to the unperturbed supercooled cloud. As the Bergeron–Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.  相似文献   

11.
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.  相似文献   

12.
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.  相似文献   

13.
The microstructure of orographic clouds related to the aerosol present was studied during the second Aerosol Characterisation Experiment (ACE‐2). Very high cloud droplet number concentrations (almost 3000 cm−3) were observed. These high concentrations occurred when clouds formed on a hill slope at Tenerife in polluted air masses originating in Europe that had transported the order of 1000 km over the Atlantic Ocean. The validity of the measured droplet number concentrations was investigated by comparing with measurements of the aerosol upstream of the cloud and cloud interstitial aerosol. Guided by distributions of the ratios between the measurements, three criteria of typically 30% in maximum deviation were applied to the measurements to test their validity. Agreement was found for 88% of the cases. The validated data set spans droplet number concentrations of 150–3000 cm−3. The updraught velocity during the cloud formation was estimated to 2.2 m s−1 by model calculations, which is typical of cumuliform clouds. The results of the present study are discussed in relation to cloud droplet number concentrations previously reported in the literature. The importance of promoting the mechanistic understanding of the aerosol/cloud interaction and the use of validation procedures of cloud microphysical parameters is stressed in relation to the assessment of the indirect climatic effect of aerosols.  相似文献   

14.
Kinetic limitations on cloud droplet formation and impact on cloud albedo   总被引:1,自引:0,他引:1  
Under certain conditions mass transfer limitations on the growth of cloud condensation nuclei (CCN) may have a significant impact on the number of droplets that can form in a cloud. The assumption that particles remain in equilibrium until activated may therefore not always be appropriate for aerosol populations existing in the atmosphere. This work identifies three mechanisms that lead to kinetic limitations, the effect of which on activated cloud droplet number and cloud albedo is assessed using a one‐dimensional cloud parcel model with detailed microphysics for a variety of aerosol size distributions and updraft velocities. In assessing the effect of kinetic limitations, we have assumed as cloud droplets not only those that are strictly activated (as dictated by classical Köhler theory), but also unactivated drops large enough to have an impact on cloud optical properties. Aerosol number concentration is found to be the key parameter that controls the significance of kinetic effects. Simulations indicate that the equilibrium assumption leads to an overprediction of droplet number by less than 10% for marine aerosol; this overprediction can exceed 40% for urban type aerosol. Overall, the effect of kinetic limitations on cloud albedo can be considered important when equilibrium activation theory consistently overpredicts droplet number by more than 10%. The maximum change in cloud albedo as a result of kinetic limitations is less than 0.005 for cases such as marine aerosol; however albedo differences can exceed 0.1 under more polluted conditions. Kinetic limitations are thus not expected to be climatically significant on a global scale, but can regionally have a large impact on cloud albedo.  相似文献   

15.
The relationships between the physical and chemical properties of mixed-phase clouds were investigated at Storm Peak Laboratory (3220m MSL) located near the continental divide in northwestern Colorado. Interstitial aerosol particles, cloud droplets and snow crystals were concurrently collected when the laboratory was enveloped by a precipitating cloud. All samples were analyzed for trace elements, soluble anions, electrical conductivity and acidity.The results show average trace constituent concentration ratios of cloud water to snow water range from 0.4 to 26. All but six of the 32 elements and ions measured had ratios greater than one. This result suggests a chemical species dependency of in-cloud aerosol particle scavenging processes. Evidence of a decrease of in-cloud aerosol particle scavenging efficiency by snow due to increases in aerosol concentration is also presented.Differences between the chemical composition of cloud water and snow water are manifested most strongly when snow crystals grow by vapor deposition. In-cloud scavenging efficiencies by snow crystals for most aerosol particle chemical species are dependent on the growth of the snow crystals by accretion of cloud droplets. This chemical fractionation of the atmospheric aerosol by snow crystal formation and growth should be most active where narrow, continental cloud droplet size distributions and low liquid water contents are prevalent, enhancing the probability of snow crystal growth by diffusion.  相似文献   

16.
云滴谱宽度对模式中云的光学厚度的参数化、气溶胶间接效应的评估以及降水形成过程的研究至关重要。本文利用美国POST(Physics of Stratocumulus Top)项目2008年7月19日的飞机观测资料,分析了微物理量和云滴谱的垂直分布及微物理过程。结果表明,该云系云滴谱宽度在云底附近较大,这是由低层核化过程导致的;中层凝结增长过程使得云滴谱宽度随高度增加逐渐减小;云顶附近夹卷混合过程导致云滴谱宽度增大。绝热云中垂直速度的增大会促进云凝结核的活化使云滴数浓度增大,促进凝结增长使云滴尺度增大、云滴谱宽度减小,云滴谱宽度与云滴数浓度、云滴尺度呈现负相关关系;云洞中受夹卷混合过程影响,垂直速度减小,云滴蒸发,云滴数浓度和云滴尺度减小、云滴谱宽度增大,且该效应随绝热程度减小而增强。建议云滴谱宽度的参数化将垂直速度、云滴数浓度、云滴尺度和绝热程度等考虑在内。  相似文献   

17.
Aerosols affect precipitation by modifying cloud properties such as cloud droplet number concentration (CDNC). Aerosol effects on CDNC depend on aerosol properties such as number concentration, size spectrum, and chemical composition. This study focuses on the effects of aerosol chemical composition on CDNC and, thereby, precipitation in a mesoscale cloud ensemble (MCE) driven by deep convective clouds. The MCE was observed during the 1997 department of energy's Atmospheric Radiation Measurement (ARM) summer experiment. Double-moment microphysics with explicit nucleation parameterization, able to take into account those three properties of aerosols, is used to investigate the effects of aerosol chemical composition on CDNC and precipitation. The effects of aerosol chemical compositions are investigated for both soluble and insoluble substances in aerosol particles. The effects of soluble substances are examined by varying mass fractions of two representative soluble components of aerosols in the continental air mass: sulfate and organics. The increase in organics with decreasing sulfate lowers critical supersaturation (Sc) and leads to higher CDNC. Higher CDNC results in smaller autoconversion of cloud liquid to rain. This provides more abundant cloud liquid as a source of evaporative cooling, leading to more intense downdrafts, low-level convergence, and updrafts. The resultant stronger updrafts produce more condensation and thus precipitation, as compared to the case of 100% sulfate aerosols. The conventional assumption of sulfate aerosol as a surrogate for the whole aerosol mass can be inapplicable for the case with the strong sources of organics. The less precipitation is simulated when an insoluble substance replaces organics as compared to when it replaces sulfate. When the effects of organics on the surface tension of droplet and solution term in the Köhler curve are deactivated by the insoluble substance, Sc is raised more than when the effects of sulfate on the solution term are deactivated by the insoluble substance. This leads to lower CDNC and, thus, larger autoconversion of cloud liquid to rain, providing less abundant cloud liquid as a source of evaporative cooling. The resultant less evaporative cooling produces less intense downdrafts, weaker low-level convergence, updrafts, condensation and, thereby, less precipitation in the case where organics is replaced by the insoluble substance than in the case where sulfate is replaced by the insoluble substance. The variation of precipitation caused by the change in the mass fraction between the soluble and insoluble substances is larger than that caused by the change in the mass fraction between the soluble substances.  相似文献   

18.
Abstract

Aqueous‐phase H2O2 production in a rainband and its possible effect on sulphate production are studied by means of a two‐dimensional numerical model. In‐cloud peroxide production is incorporated into this chemistry model and its simulation results are compared with those in which aqueous‐phase H2O2 came only from the dissolution of gaseous H2O2 from the cloud interstitial air.

Results are presented for two different polluted situations ‐ Case 1 having initial SO2 and sulphate aerosol profiles representative of a moderately polluted air mass, and Case 2 having chemical profiles expected to increase the relative importance of oxidation to nucleation as a means of contributing sulphate to cloud and rain. Sulphate production increased in both cases, although in Case 1 the effect of this increase on the concentration of sulphate in rain is negligible because nucleation and scavenging of aerosol are the major processes by which sulphate enters cloud and rain. In Case 2, sulphate concentrations in rain increase by 5–10%. Under environmental conditions of low sulphate aerosol, where oxidation reactions are the dominant means for sulphate to enter cloud and rain, the neglect of sulphate produced by the additional H2O2 may lead to error. The usual uncertainties in the initial SO2 and sulphate aerosol vertical profiles, however, could be a more significant source of error in simulations of the chemistry of cloud and precipitation than the neglect of aqueous‐phase peroxide production during the lifetime of even a long‐lived system.  相似文献   

19.
A field study was conducted at a mountain-top site in northwestern Colorado. Supercooled cloud water, collected as a function of droplet size, was analyzed for anions, cations and trace elements. Enrichment factors (EF) of SO 4 2– , K+, Na+ and Cl relative to crustal and marine reference elements (Al and Na) were calculated to determine whether chemical fractionation of the aerosol occurs during cloud droplet formation. The largest EF's for all ions were found for droplets less than 10–15 µm diameter. Ratios of the small to large droplet mean EF's ranged from 1 to 2, for SO 4 2– relative to both Al and Na+, to 10 to 12 for Na+, Cl and K+, relative to Al. EF's of K+ and Cl in the bulk cloud water were in crustal and marine proportions, respectively. It was concluded that although bulk could chemistry may indicate a lack of enrichment of a species, this may not be true throughout the droplet size distribution. The higher enrichments in small droplets is likely a result of their formation on small aerosol particles whereas the large droplets form on the largest aerosol particles. This may suppress EF's in precipitation relative to the total aerosol.  相似文献   

20.
利用GRAPES模式研究气溶胶对云和降水过程的影响   总被引:5,自引:3,他引:2  
石荣光  刘奇俊  马占山 《气象》2015,41(3):272-285
在GRAPES中尺度模式的双参数微物理方案中加入了气溶胶活化参数化过程,实现了对云滴数浓度的预报。选取不同季节两个降水过程进行模拟,并分别开展了不同气溶胶背景下的两个试验进行对比分析,研究气溶胶对云和降水可能的影响。结果表明:气溶胶浓度增加后,因为活化产生了更多尺度较小的云滴,抑制了云雨的自动转化,使大气中滞留了更多的云水,暖云降水减小;另一方面,云水的增加会使冰相粒子,尤其是雪和霰通过碰并云水等过程而增大,最后融化成雨增加冷云降水,同时冰相粒子增加会释放更多的潜热,促进上升气流的发展,进一步增加冷云降水。气溶胶对降水的影响存在空间不一致性,暖云较厚的地方暖雨过程受到的抑制明显,使地面降水减小,冷云厚度相对较厚时,冷云降水的增加会大于暖云降水的抑制,使地面降水增加。同时由于在云降水发展的不同阶段冷暖云的变化,气溶胶对降水的影响也存在着时间不一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号