首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
207Pb/206Pb ages from 420 zircons from 9 upper amphibolite and granulite facies quartzites of the post-1.8 Ga metasedimentary cover from the Occidental and Oriental terranes from the Neoproterozoic central Ribeira belt, in eastern Brazil, are discussed. Ages from the Occidental terrane show that Proterozoic ages predominate with a modal class at 2.1–2.2 Ga and that Archean ages are less common and lie within the 2.5–3.6 Ga range. A wider dispersion on Proterozoic ages down to 1.1 Ga and youngest Neoproterozoic ages (550–700 Ma) were also observed and could be related to the Brasiliano/PanAfrican metamorphic events. The data show that detrital sediments of the Occidental terrane were derived predominantly from erosion of a 1.8–2.2 Ga Paleoproterozoic terrane with a small proportion of a 2.6–3.6 Ga Archean crust. Ages from the Oriental terrane are greatly dispersed, but show a significant proportion of ages between 1.7 and 2.1 Ga, although the great majority are between 0.5 and 1.6 Ga. Only 3 out of 144 grains yield Archean ages, between 2.5 and 2.9 Ga. Based on the greatest errors observed on the data from the Oriental Terrane (100–300 Ma), and a continuum of obtained ages between 2072 Ma (Paleoproterozoic) and 517 Ma (Cambrian), the more plausible interpretation is that the dispersion of ages results from partial resetting of the U–Pb system by Brasiliano metamorphism in Proterozoic–Archean zircons, although a Mesoproterozoic source could not be discarded.  相似文献   

2.
In this work we report 207Pb/206Pb LA-ICPMS ages of 152 detrital zircons from lower greenschist facies quartzites from Proterozoic basin successions of the southern border of the São Francisco Craton, southern Minas Gerais State, Brazil. These are the intracratonic São João del Rei basin, the intraplate continental margin Andrelândia basin, and the Serra do Ouro Grosso sequence, developed on a crystalline basement older than 1.8 Ga, and deformed and metamorphosed during the Brasiliano Orogeny, ca. 0.59–0.50 Ga. The data constrain both the ages of the sources and the interval of sedimentation. The detrital zircons of the Serra do Ouro Grosso sequence were derived predominantly from the erosion of a Neoarchean crust, 2.5–2.8 Ga old, with only one grain showing a Paleoproterozoic age (2, 245±83 Ma) older than the Transamazonian event. Zircons extracted from a shelf quartzite of the lowermost sequence of the São João del Rei basin indicate derivation from the 1.8–2.2 Ga Transamazonian crust, with subordinate contribution from the 2.5–2.9 Ga Archean crust. The 1, 809±41 Ma age is interpreted as the maximum limit for sedimentation in this basin. The results confirm the regional correlation with the Espinhaço Rift successions. The zircons extracted from an autochthonous quartzite of the Andrelândia sequence yielded ages in the 1.0–2.2 Ga range, with a modal class at 1.2–1.3 Ga. Only two of the forty analyzed zircons yield Archean ages. The youngest zircon yields 1, 086±85 Ma. The zircons from the allochthonous quartzite yield ages between 1.0–2.7 Ga, with a modal class at 2.1–2.2 Ga. Only five of 45 analyzed grains yield Archean ages. The youngest zircon has an age of 1, 047±77 Ma. The results indicate that the detrital sediments deposited during the second marine flooding event of the Andrelândia sedimentation were mainly derived from the erosion of Mesoproterozoic and Paleoproterozic rocks. The 1, 047±77 Ma age is interpreted as the maximum depositional age for the described association.  相似文献   

3.
J.L. Paquette  M. Tiepolo   《Chemical Geology》2007,240(3-4):222-237
Monazite [(LREE)PO4], a common accessory mineral in magmatic and metamorphic rocks, is complementary to zircon in U–Th–Pb geochronology. Because the mineral can record successive growth phases it is useful for unravelling complex geological histories. A high spatial resolution is required to identify contrasted age domains that may occur at the crystal-scale. Bulk mineral techniques such as ID-TIMS, applied to single monazite grains recording multiple overgrowths or isotope resetting can result in partly scattered discordant analytical points that produce inaccurate intercept ages. Laser ablation (LA)-ICPMS has been demonstrated to be a useful technique for U–Th–Pb dating of zircons, and this study tests its analytical capabilities for dating monazite. A sector field high resolution ICPMS coupled with a 193 nm ArF excimer laser ablation microprobe is capable of achieving a high spatial resolution and producing stable and reliable isotope measurements.

The U–Th–Pb systematic was applied to monazite grains from several samples: a lower Palaeozoic lens from high-grade terrains in Southern Madagascar, Neogene hydrothermal crystals from the Western Alps, a Palaeoproterozoic very high temperature granulite from central Madagascar and a Variscan leucogranite from Spain, directly on a polished thin section. The major aim was to compare and/or reproduce TIMS and EMP ages of monazite from a variety of settings and ages. The three independent 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios and ages were calculated. Isotope fractionation effects (mass bias, laser induced fractionation) were corrected using a chemically homogeneous and U–Pb concordant monazite as external standard.

This study demonstrates that excimer laser ablation (ELA)-ICPMS allows U–Th–Pb dating of monazite with a high level of repeatability, accuracy and precision as well as rapidity of analysis. A spatial resolution almost comparable to that of EMP in terms of crater width (5 μm) produced precise 208Pb/232Th, 206Pb/238U and 207Pb/235U ratios for dating Palaeozoic to Precambrian monazites. The advantages of (ELA)-ICPMS isotope dating are precision, accuracy and the ability to detect discordance. In the case of late Miocene hydrothermal monazites from the Alps, a larger spot size of 25 μm diameter is required, and precise and accurate ages were obtained only for 208Pb/232Th systematics. Results from the Variscan granite show that in situ U–Th–Pb dating of monazites with (ELA)-ICPMS is possible using a 5 μm spot directly on thin sections, so that age data can be placed in a textural context.  相似文献   


4.
Zircon U-Pb age, trace elements, and Hf isotopes were determined for granulite and gneiss at Huaugtuling (黄土岭), which is hosted by ultrahigh-pressure metamorphic rocks in the Dabie(大别) orogen, east-central China. Cathodolumineseence (CL) images reveal core-rim structure for most zircons in the granulite. The cores show oscillatory zoning, relatively high Th/U and 176 Lu/177 Hf ratios, and high rare earth element (HREE)-enriched pattern, consistent with magmatic origin. They gave a weighted mean 207 Pb/206 Pb age of (2 766±9) Ma, dating magma emplacement of protolith. The rims are characterized by sector ur planar zoning, low Th/U and 176 Lu/177 Hf ratios, negative Euanomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphicconditions. Zircon U-Pb dating yields an age of (2 029±13) Ma, which is interpreted as a record ofmetamorphic event during the assembly of the supercontinent Columbia. The gneiss has a protolith ageof (1982±14) Ma, which is similar to the zircon U-Pb age for the granulite-facies metamorphism,suggesting complementary processes to granulite-facies metamorphism and partial melting. A fewinherited cores with igneous characteristics have 207 pb/206 Pb ages of approximately 3.53, 3.24, and 2.90Ga, respectively, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants. A fewTriassic and Cretaceous metamorphic ages were obtained, suggesting the influences by the Triassiccontinental collision and postcollisional collapse in response to the Cretaceous extension. Comparingwith abundant occurrence of Triassic metamorphic zircons in ultrahigh-pressure eclogite and granitehydrous melt is evident for zircon growth in theHuangtuling granulite and gneiss during thecontinental collision. The magmatic protolithzircons from the granulite show a large variationin 176 Hf/177 Hf ratios from 0.280 809 to 0.281 289,corresponding to era(t) values of-7.3 to 6.3 andHf model ages of 2.74 to 3.34 Ga. The 2.90 Gainherited zircons show the similar Hf isotope features. These indicate that both growth of juvenile crust and reworking of ancient crust took place at the time of zircon formation. It is inferred that the Archean basement of the Yangtze block occurs in thenorth as the Dabie orogen, with ca. 2.90-2.95 Ga and 2.75-2.80 Ga as two major episodes of crustalformation.  相似文献   

5.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


6.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

7.
为了探讨华北板块南缘中元古代沉积地层的时代归属和物质来源、区域古地理格局和大地构造特征,对豫西灵宝福地地区的高山河群进行碎屑锆石U-Pb年代学和锆石微量元素特征研究。获得的高山河群年龄最小(年轻)的单颗碎屑锆石 207Pb/206Pb 年龄值为1685±39 Ma,从而限制了高山河群最早沉积年龄不早于1700 Ma。结合上覆的龙家园组年代学标定(1594±12 Ma),将高山河群的形成年代限定为1700—1600 Ma,即中元古代长城纪的中晚期,属国际地质年表的“固结纪”。高山河群中碎屑锆石 207Pb/206Pb 年龄范围为1685—2751 Ma,呈现1850 Ma、2150 Ma、2300 Ma和2500 Ma共4个年龄峰值,对应于华北克拉通古元古代重要的地质事件,并且高山河群以1850 Ma和2500 Ma峰值年龄段的地质体为主要的物源区。根据高山河群与云梦山组碎屑锆石年龄频率对比,推测在豫西地区西侧存在以往报道较少的年龄为2500 Ma的地质体。根据熊耳群火山岩及其对应锆石的地球化学特征和熊耳期盆地动力学性质,并结合高山河群沉积相特征和沉积盆地构造属性,认为熊耳群形成于与“岛弧”共生的拉张性质的弧后盆地地区,而其上覆的高山河群为弧后盆地靠近大陆一侧的具有被动大陆边缘性质的滨浅海沉积。  相似文献   

8.
Fernando Corfu 《Lithos》2000,53(3-4):279-291
Stepwise HF-dissolution experiments on five Archean zircon populations reveal very systematic patterns of Pb discrimination, releasing at one point Pb with artificially too-old 207Pb/206Pb ages. The experiments involved a first HF dissolution step for 1 h at room temperature and evaporation on a hot-plate that produces Pb with young 207Pb/206Pb ages, followed by a 4 1/2 h HF dissolution step in an oven at 190°C that liberates the excessively old Pb. The final residue yields in most cases U–Pb data that are consistent with the results obtained by the normal selection, abrasion, and total dissolution procedure. In these examples, the too-old ages cannot be easily explained by the presence of an inherited core component but are more likely to indicate segregation of Pb in zircon sub-domains during thermal annealing episodes early in its history, as has been proposed by other workers. Aside from shedding light on these particular aspects of zircon U–Pb systematics, the combined results also provide geologically relevant information concerning the regional evolution of the western Superior Province in Ontario. An age of 2718±3 Ma for a gabbroic unit from the Quetico Subprovince shows that this was coeval to 2722–2718 Ma ultramafic to felsic igneous rocks in the adjacent Shebandowan greenstone belt, including a gabbro body dated in this study at 2725+17/−11 Ma. These age relationships suggest that volcanic units of the Shebandowan greenstone belt were tectonically imbricated in younger sedimentary rocks of the Quetico basin during late Archean convergence. The other three samples represent felsic intrusive units from Geraldton in the Wabigoon subprovince. An age of 2699±1 Ma for an Au-mineralized feldspar porphyry dyke and identical ages of 2690±1 Ma for two phases of the syn-tectonic Croll Lake stock put constraints on the timing of major deformation and hydrothermal activity in the belt.  相似文献   

9.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   

10.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   

11.
The ages of Indian carbonatites are still controversial. Most of the earlier datings were done by K/Ar methods. We therefore analysed Pb/Pb ratios in carbonatites from carbonatite-alkalic complexes of Newania (NW India, Rajasthan State) and Sevattur (SW India, Tamil Nadu State) to constrain the age and geological history of these rocks. Newania carbonatites are intrusive into Precambrian Untala granite-gneiss and mainly dolomitic in composition (rauhaugite) followed by a later phase of ankerite carbonatite, while thin calcite carbonatite (sövite) dykelets are the youngest in the sequence. The analysed whole-rock samples are characterised by 206Pb/204Pb ratios between 60 and 176 and 207Pb/204Pb ratios between 22 and 40, which are extremely high in comparison to common igneous rocks and even for carbonatite compositions. One sample, New 37, shows the extreme ratios of 206Pb/204Pb = 574 and 207Pb/204Pb = 73. This requires a μ-value of about 2000 for the last 1550 Ma. If the samples are classified according to their petrographic/geochemical characteristics this results in an isochron age of 1551 ± 46 Ma for the ankerite carbonatites (six samples). The dolomites (6 samples) yield an isochron age of 2.27 Ga. Although these results fit quite well into the geological evolution scheme of the area, the extreme long age hiatus between dolomite carbonatite and ferrocarbonatite formation events raises severe problems for their petrologic interpretation.

The Proterozoic Sevattur carbonatite complex (SCC, Tamil Nadu) was emplaced contemporaneously with a large number of carbonatite complexes within the Precambrian gneissic terrane of the Eastern Ghats Mobile Belt. The main mass is composed of dolomite carbonatite (rauhaugite) with a few dikes of calcite carbonatite (sövite) and ankerite carbonatite within it. All eight samples together yield an isochron of 805 ± 10 Ma. This isochron is mainly determined on ankerite carbonatites with μ-values up to 1900 for the last 800 Ma. Taking only ankerite carbonatites into account, the resulting age is 801 ± 11 Ma. The 206Pb/204Pb and 207Pb/204Pb ratios of these samples are similar to the main group of Newania and far beyond the isotopic composition of common igneous rocks.

Our investigations show that in carbonatitic rock systems extremely high lead isotopic ratios can be established due to the crystallization of uranium-rich mineral phases. In both cases the observed high to extremely high initial Pb isotope ratios require the residence of the lead in intermediate high-μ reservoirs either within the upper mantle or the crust prior to the carbonatite formation. A high-temperature event, which completely reset the Rb/Sr and K/Ar isotopic systems of Nevania carbonatites, seems to have no influence on the lead isotopic systematics.  相似文献   


12.
李猛  王超  王钊飞 《地质科学》2013,48(4):1115-1139
汝阳群分布在华北克拉通西南缘,位于河南-陕西-山西交界地区,主要为一套未变质的碎屑岩及碳酸盐岩地层,不整合于熊耳群火山岩系之上,其上被洛峪群整合覆盖。长期以来,其地质时代一直存有较大的争议。本文通过对汝阳群下部白草坪组4个石英砂岩样品中的碎屑锆石进行LA-ICP-MS U-Pb年龄测定,获得的207Pb/206Pb年龄分布范围为3 000~1 800 Ma,主要集中在2 600~2 400 Ma之间(约占67%),年龄主峰值为2 550~2 500 Ma,说明其沉积物质主要来源于新太古代末以及古元古代的地质体。其中,最年轻锆石的207Pb/206Pb谐和年龄值分别为1 817±22 Ma、1 838±23 Ma、1 924±17 Ma和1 829±28 Ma,说明汝阳群沉积时代不老于1 800 Ma,与其上覆洛峪群中近期获得1 611±8 Ma的年龄相吻合,因此其形成时代应为中元古代早期。  相似文献   

13.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

14.
Supracrustal and meta-igneous rock units from the ruby mine area of the Harts Range, eastern Arunta Inlier, central Australia, have been dated by the zircon U---Pb and Rb---Sr total-rock (TR) and mica methods. A well-defined zircon discordia for a weakly deformed specimen of the Bruna granite gneiss yields an age of emplacement of 1748−4+5 Ma, thereby constraining the minimum age of the Irindina supracrustal assemblage. Metapelitic gneiss within the supracrustals and a meta-igneous ultramafic boudin from the associated Harts Range meta-igneous complex yield highly discordant zircon data, revealing a strong early Palaeozoic overprint. Rb---Sr TR data from anorthositic gneisses associated with the ultramafic boudin are highly disturbed, also apparently during the lower Palaeozoic. However, Rb---Sr model age calculations and the zircon U---Pb data suggest a maximum age of about 2000 Ma for the supracrustal and meta-igneous rocks, and argue for new Proterozoic crust formation.

Zircon U---Pb data from a deformed pegmatite, emplaced in the meta-igneous complex, yield an emplacement age of 520−4+5 Ma, further pointing to Lower Palaeozoic magmatism and deformation. Correlations of U content and calculated 206Pb/238U age for the ultramafic boudin zircons suggest that new growth of low-U zircons occurred during retrogression associated with this event. The Sr-isotope systematics of the anorthositic gneisses can also be interpreted in terms of introduction of Palaeozoic Sr. Our data suggest lower Palaeozoic (possibly Delamerian) tectonothermal activity to be more important in the evolution of the Harts Range area than previously recognised.

On the other hand, Rb---Sr mica ages for deformed and undeformed pegmatites, and TR isochrons for the latter, show that pervasive tectonothernal activity had ceased by about 315 Ma and that regional cooling occurred between about 345 and 325 Ma. Local shear-zone biotite resetting may have persisted to about 300 Ma, consistent with the previously recognised Alice Springs Orogeny. Possible dilational Pb loss in the Bruna zircons occurred at about 103 Ma.  相似文献   


15.
运用阴极发光技术,对湖南白马山龙潭超单元2个样品和瓦屋塘花岗岩1个样品的锆石进行了内部结构分析,在此基础上利用锆石SHRIMP U-Pb定年方法进行了同位素年代学测定。其中,白马山龙潭超单元2个黑云母二长花岗岩样品分别给出了(215.9±1.9) Ma和(212.2±2.1) Ma的主体谐和年龄。同时还测得了一组较年轻的谐和年龄((201.0±2.8) Ma)和一组较老的锆石核部年龄(230.3~227.0 Ma),表明研究区印支晚期存在多期花岗质岩浆的侵入活动。瓦屋塘岩体黑云母二长花岗岩1个样品给出了(217.7±1.8) Ma的谐和年龄。这2个岩体的形成进一步佐证了华南大陆印支晚期岩浆活动于210~225 Ma,达到岩浆活动的峰期。地球化学测试结果显示,白马山和瓦屋塘岩体均为弱过铝-强过铝质花岗岩,具壳源型花岗岩的特征,形成于后碰撞期或碰撞晚期的构造环境,源于早元古代变质杂砂岩的部分熔融。结合区域大地构造背景认为,这2个岩体形成于秦岭-大别和松马2条印支期缝合带碰撞结束后的印支晚期伸展构造背景下,为热-应力松弛阶段,板内挤压加厚的地壳减压熔融作用的产物。  相似文献   

16.
This paper presents new zircon U–Pb data and interpretations for the gneissic rocks in the Yunkai massif in order to constrain the timing and evolution of the Caledonian tectonothermal event in the South China Block (SCB). Magmatic and inherited zircons from the orthogneiss in the region, previously thought to be of Precambrian origin, yielded 206Pb/238U apparent ages of 421–441 Ma and 513–1343 Ma, respectively. Also a weighted mean 206Pb/238U age of 236.0 ± 3.1 Ma was obtained, interpreted as the metamorphic resetting age during the Indosinian tectonic event. Our analyses show that the paragneiss in the region, previously regarded as Proterozoic sedimentary rocks, contains detrital zircons of the Archaean to Paleozoic origin, of which the youngest zircons yielded the U–Pb age of  423 Ma. These data indicate that (1) the Proterozoic and Archaean components may exist beneath the Yunkai massif; (2) most of the metaigneous rocks are actually the Caledonian anatectic granites possibly overprinted by Indosinian ( 236 Ma) reactivation; (3) some paragneiss might have originally deposited during the Devonian time; and (4) a subsequently rapid uplifting took place after the emplacement of the Caledonian granites, revealed by the observation that the Devonian clastic strata uncomfortably overlie the Caledonian granites. In combination with other geochronological data and geological observations throughout the SCB, we propose that the Caledonian tectonothermal event around Silurian ( 450–400 Ma) might be a result from an intracontinental collision between the Yangtze and Cathaysian blocks in response to the subduction/collision between the North China block and SCB.  相似文献   

17.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

18.
The Augaro volcano-sedimentary assemblages of western Eritrea are part of the Neoproterozoic, N-S trending belt of low-grade volcano-sedimentary and associated plutonic rocks. In contrast to the volcanic-dominated oceanic-arc assemblages in central Eritrea, the predominant rock types in the west are supracrustal sequences of sedimentary origin with subordinate volcanic rocks. These Augaro supracrustal rocks are overlain, unconformably, by a basin-fill metasedimentary succession known as the Gulgula Group. The Augaro metavolcanic rocks are tholeiitic and range in composition from basalt to basaltic andesite. Comparison of trace element characteristics and N-MORB-normalised spidergrams of these rocks with those of modern volcanic environments and age-comparable metavolcanic rocks of known tectonic association from the Arabian-Nubian Shield suggest that the volcanic assemblages from western Eritrea were generated in a back-arc tectonic setting.

Single zircon Pb-Pb evaporation and vapour-transfer U-Pb analyses of magmatic zircons from pre/syn-tectonic granites yield a mean 207Pb/206Pb age of 849±20 Ma and an upper concordia intercept age of 849±26 Ma. These ages are interpreted to represent the time of major magmatism in western Eritrea and are comparable to ages of early arc magmatism in central and northern Eritrea and in the southern Nubian Shield. Initial eNd values and initial Sr isotope ratios of whole-rock samples of magmatic rocks calculated for an age of 850 Ma range from +4.0 to +7.1 and 0.7026 to 0.7037, respectively. Single zircon 207Pb/206Pb ages, initial eNd value and Sr isotope ratio for a granitic clast in the Gulgula metaconglomerate suggest that the source area for the Gulgula metasedimentary rocks is similar to the surrounding Neoproterozoic rocks of western Eritrea.  相似文献   


19.
周喜文  耿元生 《岩石学报》2009,25(8):1843-1852
贺兰山孔兹岩系作为华北克拉通西部孔兹岩带的重要组成部分,其变质时代问题一直悬而未决.利用SHRIMP锆石U-Pb定年技术,对贺兰山孔兹岩系中3个代表性富铝片麻岩(石榴堇青钾长片麻岩、石榴堇青二长片麻岩与石榴黑云斜长片麻岩)样品进行了精确定年.发现这3种岩石虽处不同层位,但其碎屑锆石年龄却非常集中,各测点207Pb/206Pb年龄总体变化在2.0~2.1Ga之间,加权平均年龄则在2017~2040Ma之间.这些碎屑锆石都具有岩浆结构特征,反映当时曾存在大规模花岗质岩浆活动,所成岩体为孔兹岩系沉积提供了充足物源.另有少量大于2.5Ga的碎屑锆石(2520~2949Ma),表明本区存在太古代岩浆活动记录.本区石榴堇青二长片麻岩中发育典型的变质增生锆石,其成因很可能与黑云母的脱水熔融反应有关.利用该锆石确定贺兰山孔兹岩系的变质时代为1950±8Ma.该时代与东部大青山、乌拉山孔兹岩系变质时代相同,表明华北克拉通西部的阴山地块与鄂尔多斯地块大体是以平行的方式正面拼贴到一起的,形成了目前的孔兹岩带.  相似文献   

20.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号