首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting
Authors:Orhan Karsli  Bin Chen  Faruk Aydin  Cüneyt en
Institution:

aDepartment of Geological Engineering, Karadeniz Technical University, TR-29000 Gümü?hane, Turkey

bSchool of Earth and Space Sciences, Peking University, 100871 Beijing, China

cDepartment of Geological Engineering, Ni?de University, TR-51200 Ni?de, Turkey

dDepartment of Geological Engineering, Karadeniz Technical University, TR-61080 Trabzon, Turkey

Abstract:The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at not, vert, similar 43 Ma at shallow depths (not, vert, similar 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat (La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eulow asterisk = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = ? 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) ? 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that not, vert, similar 77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.
Keywords:Eastern Turkey  Granitoid rocks  Magma interaction  Mafic microgranular enclave  Radiogenic isotopes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号