首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

2.
Groundwater is a very important component of water resources in coastal aquifers in Thoothukudi. It has been established that the groundwaters in the coastal zone of the Zirconium Complex, Pazhayakayal, Thoothukudi district, Tamilnadu, India, are subjected to wave and tidal impact. The groundwater quality was studied by hydrogeological methods, 2D electrical resistivity imaging (ERI) techniques (six profiles), 11 Wenner vertical electrical sounding (VES), and well log analysis. Also, nine geochemical water samples were taken from the study area. The 2D ERI and VES surveys were carried out using WGMD-4 Ltd., Chennai, resistivity meter, multicore cable, and multielectrodes with Wenner array. The collected resistivity data were interpreted using the Res2DINV software. The research shows that the groundwaters are the result of the paleoriver flow along the Tamirabarani Channel in the western area and of the seawater intrusion in the eastern area. The fresh water is characterized by resistivity of about 10–100 Ohm?m in the study area. The resistivity of 10–50 Ohm?m indicates that the subsurface section is made up of sand, clay, and caliche. Resistivity values of more than 200 Ohm?m are specific to sand dunes. The very low resistivity (<5 Ohm?m) layer might be due to the seawater intrusion in the study area. Six water samples from the well drilled in the coastal area were analyzed, which made it possible to determine the concentrations of major and trace elements in the groundwaters. These data were used to establish the seawater intrusion and coastal environment characteristics in the study area.  相似文献   

3.
为研究砂质含水层中海水入侵问题,确定海水入侵过程中含水介质内海水入侵楔形体的发展演化过程,本文采用砂槽实验模拟海水入侵,利用高密度电阻率探针观测系统远程实时监测海水入侵过程中土体的垂向电阻率变化,据电阻率变化曲线分析海水入侵发生发展过程。研究结果表明:高密度电阻率探针对海水入侵界面变化反应灵敏,能够监测到咸淡水突变界面形成、过渡带演化及咸淡水界面变迁等一系列现象,较好地实时监测海水入侵发生发展过程及海水入侵状态并进行预警。  相似文献   

4.
A water resources database was developed and used to characterize the geological and hydrogeological settings of groundwater aquifers in the northern part of the United Arab Emirates. An intensive 2D Earth Resistivity Imaging (ERI) survey was conducted in selected areas to assess the available groundwater resources and delineate the salt-water intrusion. Drilling information of the existing monitoring wells as well as their records of water table elevations and groundwater salinity were used to measure the horizontal and vertical variations in lithology, degree of saturation, and groundwater salinity and thus to improve the interpretation of ERI data. The results of the chemical analyses of water samples collected from the wells along with the 2D ERI survey profiles were used to obtain an empirical relationship between the inferred earth resistivity and the amount of total dissolved solids. This relationship was used along with the true resistivity sections resulting from the inversion of 2D ERI data to identify and map three zones of water-bearing formation (fresh, brackish, and salt-water zones) in the coastal areas. The results indicated that the depth to the fresh-brackish interface exceeded 50 m at the upstream of the wadies and was in the order of 10 m or less in the vicinity of shoreline. Because of the high resistivity contrast between dry and water saturated fractured rocks; this method was very successful in detecting water-filled fractures and cavities in the carbonate aquifer. The application of this method was unsuccessful in clayey aquifers as it was not possible to isolate lenses of gravel and/or saturated with saline or brackish water from the surrounding clayey materials.  相似文献   

5.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

6.
Drilling information, historical water table levels, groundwater salinity records of the existing water wells in Wadi Al Bih area, United Arab Emirates, were stored in a geodatabase and used to characterize the geological and hydrogeological settings of this area. A 2D earth resistivity imaging survey was conducted for the first time in the Northern UAE to determine the potential of the Quaternary aquifer and its groundwater quality in the areas where there are no monitoring wells. The results of the chemical analyses of the collected groundwater samples together with the inversion results of the resistivity data were used to draw a total salinity map and determine the spatial variations in groundwater quality. The inversion results of the 2D earth resistivity imaging data indicated that the Quaternary aquifer in the study area is in a good connection with the underlying carbonate aquifer. It also indicated that the carbonate aquifer is of major regional and vertical extension and it contains the fresh water in this area. The data stored in the developed database were used to produce different types of geopotential maps.  相似文献   

7.
Zarif  Fardous  Slater  Lee  Mabrouk  Mohamed  Youssef  Ahmed  Al-Temamy  Ayman  Mousa  Salah  Farag  Karam  Robinson  Judy 《Hydrogeology Journal》2018,26(4):1169-1185

Understanding and developing groundwater resources in arid regions such as El Salloum basin, along the northwestern coast of Egypt, remains a challenging issue. One-dimensional (1D) electrical sounding (ES), two-dimensional (2D) electrical resistivity imaging (ERI), and very low frequency electromagnetic (VLF-EM) measurements were used to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential for extraction of potable water. 1D resistivity sounding models were used to delineate geoelectric sections and water-bearing layers. 2D ERI highlighted decreases in resistivity with depth, attributed to clay-rich limestone combined with seawater intrusion towards the coast. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. The VLF-EM survey identified likely faults/fractured zones across the study area. A combined analysis of the datasets of the 1D ES, 2D ERI, and VLF-EM methods identified potential zones of groundwater, the extent of seawater intrusion, and major hydrogeological structures (fracture zones) in El Salloum basin. The equivalent geologic layers suggest that the main aquifer in the basin is the fractured chalky limestone middle Miocene) south of the coastal plain of the study area. Sites likely to provide significant volumes of potable water were identified based on relatively high resistivity and thickness of laterally extensive layers. The most promising locations for drilling productive wells are in the south and southeastern parts of the region, where the potential for potable groundwater increases substantially.

  相似文献   

8.
Seawater intrusion and its spreading rate are the challenging problems in over-pumped coastal aquifers of arid zones like the Batinah region of Oman. The study delineates the saline plume, identifies saline/freshwater zones, and estimates the migration rate of the plume in the Al Khabourah area of the Batinah coast. Time domain electromagnetic surveys, aided by vertical electrical sounding surveys, and seismic refraction methods have defined the locus of the saline/freshwater interface in the area. The current (2007) interface position, when compared with that determined during 2002, indicates a prominent recession in the saline plume and suggests an average annual recession rate of 120 m. This recession may be attributed mainly to the recharging dam of Wadi Al Hawasinah, constructed in 1995, and the enforcement of new water resources legislation. This study reveals the shielding role of the recharging dam to counter advancing saline intrusion.  相似文献   

9.
Freshwater lenses are vital to small island communities but are susceptible to seawater intrusion due to the physical changes in the shoreline land cover. The effect of seawater intrusion and irrigation water on a coastal unconfined aquifer beneath naturally preserved mangrove and deforested mangrove-barren belt was investigated in Carey Island. Analysis of the total dissolved solids (TDS) and earth resistivity (ER) using a geochemistry-electrical integrated technique gave a TDS–ER relationship capable of predicting freshwater lens morphology affected by sea-irrigation water. The study result shows freshwater was fourfold thicker in close proximity of the mangrove forest than the mangrove barren area; the further the shoreline from the mangrove thickest section, the less vulnerable was the seawater intrusion and the more fresh the irrigation water, and hence the greater the freshwater availability potential.  相似文献   

10.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

11.
Groundwater suitability for agriculture in an island with limited recharge area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for oil palm cultivation at the ex-promontory land of Carey Island in Malaysia. This is the first study that used the integrated method of geo-electrical resistivity and hydro-geochemical methods to investigate seawater intrusion to the suitability of groundwater for oil palm cultivation at two different land cover condition. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour conductivity maps show that area facing severe coastal erosion and area still intact with mangrove forest exhibits unsuitable groundwater condition for oil palm at the unconfined aquifer thickness of 15 and 31 m, respectively. Based on local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), the condition in the study area, especially in severe erosion area, by the twenty-first century will no longer be suitable for oil palm plantation. The application of geo-electrical method combined with geochemical data, aided with the information on environmental history and oil palm physiography, has demonstrated that the integration of techniques is an effective tool in defining the status of agricultural suitability affected by salinity at the coastal aquifer area.  相似文献   

12.
The demand for water is rapidly increasing in Egypt, because of high population and agriculture production growth rate, which makes research of water resources necessary. The regional multi-aquifer system of the Miocene–Pleistocene age is discharged in Wadi El Natrun area. Intensive aquifer overexploitation and agricultural development in the area are related to groundwater quality deterioration. Hydrochemical and hydrogeological data was evaluated to determine the groundwater origin and quality in the south-eastern part of wadi, which appears to be more significant for water supply owing to lower groundwater salinity. The dominance of the high mineralised Cl groundwater type was found; however, also less mineralised SO4 and HCO3 types were identified there. Based on the ion relations, halite and gypsum dissolution and ion exchange are the most important hydrochemical processes forming the groundwater chemical composition. The Cl dominated groundwater matches the discharge part of the regional hydrogeological system. Contrary, the presence of HCO3 and SO4 hydrochemical types corresponds to the infiltration and transferring parts of the hydrogeological system indicating the presence of zones conducting low mineralised groundwater. The discharge area of the over-pumped aquifer in Wadi El-Natrun lies 23 m beneath the sea level with the shoreline being at the distance of 100 km, thus there is a real risk of seawater intrusion. Using the hydrochemical facies evolution diagram, four samples in the centre of the discharge area indicate advanced seawater intrusion. The zones of the highest demand for groundwater quality protection were indicated based on a spatial pattern of hydrogeochemical composition.  相似文献   

13.
Hydrogeophysical investigations of the Pleistocene aquifer at the Kom Hamada area, Egypt, have been conducted to determine the characteristics of groundwater. The main water-bearing formations in the study area are composed of Quaternary deposits. Water samples were taken and chemically analyzed at 29 sites. The constructed iso-salinity contour map of the study area showed an increase in salinity from 451.75 mg/l at eastern parts to 1,091.85 mg/l at western parts. The groundwater of the study area showed a hydrochemical evolution from Ca–HCO3 at the eastern side to Na–Cl at the western side. Some of groundwater constituents have high concentration values exceeding the safe limit for drinking. Eighteen vertical electrical soundings (VES) were conducted in the study area. These soundings were conducted near existing wells to obtain layer parameters of the various penetrated layers and to calculate the petrophysical characteristics of the aquifers. The resistivity of the first water-bearing layer ranges between 34 and 47 Ω m. The thickness of this layer ranges between 26 and 79 m. This layer represents the first aquifer, where it is followed by another water-bearing layer with resistivity ranges between 29 and 62 Ω m and extends downward. The two aquifers are hydraulically connected. Variation of the resistivities of these two water-bearing layers is mainly due to the lithological variation. The resistivity values along with the TDS values of the two water-bearing layers indicate fresh to brackish water types.  相似文献   

14.
The present study is an approach to detect the sea/freshwater interface in Sidi Abdel Rahman area, northwestern coast of Egypt using both vertical electrical sounding and time domain electromagnetic. The measured vertical electrical soundings are interpreted in 1D and 2D manner. The 1D inversion is carried out using the commercial software (RESIST), whereas 2D resistivity nonlinear iterative inversion scheme based on the finite element technique and regularization method was used. The time domain electromagnetic stations are interpreted using Temixxl-4 software by Interpex Ltd. To have the advantages of the vertical electrical sounding in shallow depths and time domain electromagnetic in deep depths, a joint inversion algorithm is applied for the electric profile and the nearby electromagnetic profile. Very low resistivity values have been observed near the coast as well as a considerable salt/fresh water interface. The tip-top portion of the interface lies approximately 1,000 m from the shore line.  相似文献   

15.
 Saline/fresh water interface structure is one of the most important and basic hydrogeological parameter that needs to be estimated for studies related to coastal zone management, well-field design and understanding saline water intrusion mechanism/processes. The success and stability of a groundwater structure in a coastal region depend upon an accurate estimate of interface structure between saline and fresh water zones, aquifer-aquiclude boundaries and their lateral continuities and the interstitial water qualities of aquifers. Self-potential and resistivity logs provide a reasonably good basis for such estimates and for sustainable development of fresh groundwater resources. The interface depth structure for the Mahanadi delta region, as obtained and interpreted through self-potential and resistivity logs, provides a fairly clear picture of the regional extensions and boundaries of aquifers, aquicludes and interstitial water quality patterns. Aquifers in the northern sector of the basin and within the framework of Birupa and Mahanadi are characterized by an interface depth range that varies between 40 and 280 m below ground level (bgl) with brackish water on the top underlain by freshwater aquifers. The aquifers in the southern sector within the framework of Khatjori/Devi and Koyakhai/Daya/Kushbhadra/Bhargavi are characterized by an interface depth range that varies from 10 to 120 m with freshwater aquifers near the surface underlain by saline, brackish water aquifers. The inversion of these major fluid systems appears to have taken place over a narrow zone between Mahanadi and Khatjori tributaries, possibly over a wide subsurface ridge with separate basin characteristics. Received: 29 November 1999 · Accepted: 2 May 2000  相似文献   

16.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

17.
电阻率法在防治莱州湾地区海水入侵中的应用   总被引:4,自引:0,他引:4  
阐述电阻率法在莱州湾地区海水入侵防治研究中应用的理论依据、监测指标.对海、咸水入侵区地层电阻率的变化规律,咸、淡水界面的确定,圈定海水入侵通道及界面运移规律做了分析.  相似文献   

18.
The hydrogeochemical characterization of groundwater helps to assess the trend of salinization and freshening of the groundwater. The present study was carried out to understand the lateral and vertical variation of groundwater salinity and the process of salinization and freshening of the groundwater in a coastal aquifer comprising a freshwater lens. The partially isolated unconfined aquifer selected for the present study is lying just south of the Chennai City, one of the densely populated cities on the east coast of South India. Critical problems affecting this aquifer include a thin aquifer which is connected/surrounded by saltwater on all the sides, overexploitation of the groundwater, surface impermeabilization due to increasing residential areas, and destruction of existing dune morphology by conversion of barren land to the residential area which causes a reduction in their barrier effect to seawater intrusion. The process of salinization and freshening of the groundwater was studied and monitored by using electrical resistivity survey and hydrogeochemical analysis. The vertical electrical sounding was carried out at 17 locations, and 400 water samples were collected and analyzed from 50 locations during the period from August 2008 to May 2010 for this study. The apparent resistivity values were analyzed and compared with groundwater quality to demarcate the zone of seawater intrusion. The regional flow direction of the groundwater is westward and eastward with respect to the central stretch and groundwater level ranges from 4.96 m MSL at the dune morphology to 0 m MSL along the boundary on all the sides. Base exchange index indicates that salinization trend in the northern part of the study area is due to the extensive groundwater pumping which increases the possibility of seawater intrusion. The increase of base exchange index towards southern part indicates a better groundwater quality of the aquifer due to proper land use practices. A strong trend of quality alteration is clearly visible from the base exchange index in response to the seasonal change between monsoon and dry season. In the western side, the monsoonal variation in the salinization and freshening of the groundwater was not noticed; however, the salinity is slightly higher than freshwater due to the presence of clay.  相似文献   

19.
Groundwater in eastern Uganda mostly occurs in fractures in the crystalline basement rocks and at the interface between the overburden and bedrock. The study was aimed at improving the success rate of boreholes through the use of complimentary geophysical siting procedures in 16 locations in Kamuli District, eastern Uganda. Boreholes that were sited after applying appropriate geophysical techniques yielded adequate quantities of water, whereas those sited where such procedures were not applied were out of service sooner than expected. Techniques to determine the precise location of resistivity anomaly and vertical electrical sounding (VES) models were used to locate water-bearing zones. VESs were undertaken to provide an overview of the geology. The apparent resistivities of the water-bearing zones both from VES and resistivity profiling data, had a relationship with the success rates of the boreholes. Electrical resistivities were correlated with hydrogeological parameters. The majority of successful boreholes had, within water-bearing zones, minimum apparent resistivity values less than 200 and 100 Ohmm, from the resistivity profiling anomalies and VES, respectively. The depth to bedrock was generally greater than 20 m below ground level, which indicates potential for medium yielding boreholes.  相似文献   

20.
The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号