首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We describe the distribution and abundance of the midwater fish community, between 200 m and 500 m, in the North Pacific. The main area of interest was the Subarctic Pacific gyres, but we include species from the Bering Sea and the Sea of Okhotsk. There were 196 species identified in each gyre, 38 of which were common to both gyres. The most abundant species belong to the family Myctophidae and the most ecologically important myctophid probably is Stenobrachius leucopsarus. This species could have a biomass of approximately 21 million tonnes (t) in the Subarctic Pacific (including the Bering Sea and Sea of Okhotsk). S. leucopsarus is a small (about 8 cm maximum length) fish that lives up to 7 years. It is prey for a variety of other fishes, birds and mammals and may migrate into the mixing layer each evening where it feeds mainly on euphausiids and copepods.The total abundance of midwater fishes appears to be large relative to total catches of other fish in the same areas. The vertical migratory behaviour of some of the residents provides a mechanism to transfer production out of the mixing layer. The movement into the surface layer by some fishes at night indicates that dynamic changes occur in the midwater community between the day and night, and the ecosystem dynamics in the surface layer are different in the day and in the night. This behaviour and the huge biomass relative to commercial species means that the dynamics of fish communities in the Subarctic Pacific are complex and need to be studied over a 24 hour period. The large biomasses may eventually attract commercial interest, thus it is important to establish international, cooperative programs now to learn more about the dynamics of these populations and the relationships with other species.  相似文献   

2.
We compared the genetic diversity of three dominant myctophid fishes in the North Pacific Ocean that have different diel vertical migration patterns on the basis of the nucleotide sequences of the mitochondrial gene for cytochrome b. No genetic structure was detected for each of these three species. The genetic diversity progressively increased for Diaphus theta, a diel migrant species showing clear diel vertical migration; Stenobrachius leucopsarus, a semi-diel migrant, in which only part of the population migrates vertically; S. nannochir, a non-diel migrant. All three species were suggested to have experienced a recent, sudden population expansion. Interspecific differences in genetic diversity might be attributable to differences in the degree of population size reduction during the glacial periods; this degree in turn corresponds to the energy demand of the fishes.  相似文献   

3.
The food habits of the dominant myctophid Stenobrachius leucopsarus were examined in the central basin of the Bering Sea in relation to oceanographic conditions, in summer 2002 and 2003 and spring 2006. S. leucopsarus exhibited an ontogenetic and seasonal dietary shift. In spring, small fish (≤40 mm) preyed mainly on Neocalanus flemingeri/plumchrus whereas large fish fed mainly on Neocalanus cristatus. In summer, small fish preyed mainly on Metridia pacifica whereas large fish fed mainly on euphausiids (Thysanoessa spp.). In the summer of 2003, when water temperature in the epipelagic layer (≤100 m) was warmer, reflecting the prevalence of the Alaskan Stream, small-sized S. leucopsarus showed a higher stomach content index, perhaps reflecting the greater abundance of M. pacifica. Thus, the present study shows that the physical variability in the epipelagic layer affects not only diets but also feeding performance of micronekton.  相似文献   

4.
The mesopelagic community of fishes and squids are fundamental in the diet of apex predators, but in most cases their life histories and habitat requirements are poorly understood. In May 1999, a pilot study was conducted to identify mesopelagic nekton, describe dominant physical characteristics of their habitat, and compare their relative abundances over several study sites in the southeastern Bering Sea. Biological samples were collected at 250, 500, and 1000 m depths with an open pelagic rope trawl lined with 1.2-cm mesh in the codend. Net type, mesh size, and trawling techniques were designed to parallel those of extensive Russian research surveys in the western Bering Sea, permitting direct comparisons between study results. Forty-three species of fish and 15 species of cephalopods were identified, including a new species of gonatid squid and a range extension for Paraliparis paucidens, a snailfish never before observed in Alaskan waters. Faunal biomass was high with over 25,000 (1400 kg) fish and squid collected in only 13 trawls. Concentrations of fish in this area surpass published records from the western Bering Sea and North Pacific Ocean by an order of magnitude, driven primarily by Leuroglossus schmidti, a deep-sea smelt. Generally, specimens were of high quality, and new size records were established for several species of fish and squid. The physical environment as determined from altimetry, satellite-tracked drifters, and water properties (temperature and salinity) was typical of the last decade for this area. Spatial patterns in species distribution were observed, but further research is needed to determine whether these are a factor of mesoscale variability or of habitat characteristics.  相似文献   

5.
The diet of at least 28 species of mesopelagic fish from the Pacific coast of Hokkaido was examined. The dominant family was the Gonostomatidae (42%) which was represented by five species. The most abundant species wasCyclothone atraria which together with the other species of this genus preyed predominantly on copepods. Euphausiids and copepods were dominant in the diet ofGonostoma gracile. The next most abundant family was the Myctophidae (32%) which was represented by seven species. The dominant species,Stenobrachius nannochir, preyed mainly on copepods. Copepods were also the dominant food item of the other myctophids except forLampanyctus jordani which fed mainly on euphausiids. The other important family was the Bathylagidae (21%).Leuroglossus schmidti was the dominant species and its diet was more diverse with ostracods, copepods, molluscs and larvaceans being the most important food items.Bathylagus ochotensis had a similar diet. Copepods were the most important food items for all but a few species and their occurrence in the fish stomachs was related to the known vertical distribution of both predators and prey. Ostracods and euphausiids were also important prey items, the latter especially in large fish species. Molluscs and larvaceans were restricted to the two species of the family Bathylagidae.  相似文献   

6.
Results of the long-term study of the spatial and vertical distribution of the parasitic anadromous Arctic lamprey Lethenteron camtschaticum (Tilesius, 1811) (Petromyzontidae) in the North Pacific and data on its size composition are given. This species is most frequent in the northwestern Sea of Japan and the western Bering Sea. The maximum concentrations are noted in waters of southern Primorye, southwestern Sakhalin, the northwestern part of the Sea of Okhotsk, and the northern part of the Bering Sea, which is probably explained by the increased number of its victims, Pacific salmon. Near the bottom, Pacific lampreys are extremely few and are primarily encountered at depths less that 400 m, and in the Pelagic zone, in the 100-m layer. The catches have contained Arctic lampreys having a total length of 15–79 cm. The lampreys of several size groups in the catches may indicate that L. camtschaticum spends not less than four years in the sea. No relationship has been found between the body length and the capture depth. Analyzed are the relationships between the body length and weight and the body length and the condition factor. The seasonal dynamics of these indices are considered.  相似文献   

7.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

8.
The biomass, abundance, and vertical distribution of micronekton, including enidarians, mysids, euphausiids, decapods, thaliaceans, and fishes, were studied on the basis of samples collected with an 8-m2 opening-closing rectangular midwater trawl (RMT-8, mesh size: 4.5 mm) at three stations in the subarctic Pacific (the western subarctic gyre, the central Subarctic, and the Gulf of Alaska) and one station in the oceanic Bering Sea. The total biomass in the 0–1000 m water column ranged from 2.9 to 5.1 gDW m–2. Except for primary consumers that showed highly variable biomass (thaliaceans and euphausiids), biomass was highest in the oceanic Bering Sea followed by the central (boundary between eastern and western gyres), western gyre, and eastern Gulf of Alaska. The biomass compositions by higher taxa were basically similar between regions: fishes were most dominant, followed by enidarians at all stations, except for the marked predominance of thaliaceans in the Gulf of Alaska. High biomasses of gelatinous animals (31% of overall dry weight), occasionally comparable to those of fishes and crustaceans, suggest their potential importance in the subarctic Pacific. Characteristics in vertical patterns of micronekton biomass common in all stations were: (1) a mesopelagic peak around 500–600 m both day and night, (2) a layer of low biomass in the cold intermediate water and/or in the upper mesopelagic zone, (3) a nighttime shift of biomass to upper layers, and (4) an highly variable biomass of epipelagic/interzonal migrants (euphausiids and thaliaceans).  相似文献   

9.
A review of oceanographic and climate data from the North Pacific and Bering Sea has revealed climate events that occur on two principal time scales: a) 2–7 years (i.e. El Niño Southern Oscillation, ENSO), and b) inter-decadal (i.e. Pacific Decadal Oscillation, PDO). The timing of ENSO events and of related oceanic changes at higher latitudes were examined. The frequency of ENSO was high in the 1980s. Evidence of ENSO forcing on ocean conditions in the North Pacific (Niño North conditions) showed ENSO events were more frequently observed along the West Coast than in the western Gulf of Alaska (GOA) and Eastern Bering Sea (EBS). Time series of catches for 30 region/species groups of salmon, and recruitment data for 29 groundfish and 5 non-salmonid pelagic species, were examined for evidence of a statistical relationship with any of the time scales associated with Niño North conditions or the PDO. Some flatfish stocks exhibited high autocorrelation in recruitment coupled with a significant step in recruitment in 1977 suggesting a relationship between PDO forcing and recruitment success. Five of the dominant gadid stocks (EBS and GOA Pacific cod, Pacific hake and EBS and GOA walleye pollock) exhibited low autocorrelation in recruitment. Of these, Pacific hake, GOA walleye pollock and GOA Pacific cod exhibited significantly higher incidence of strong year classes in years associated with Niño North conditions. These findings suggest that the PDO and ENSO may play an important role in governing year-class strength of several Northeast Pacific marine fish stocks.  相似文献   

10.
During the 1980s and 1990s, scientific research cruises were conducted in both the eastern and western boundary regions of the North Pacific Ocean. The main purpose of these cruises was to examine the abundance and distribution patterns of juvenile salmon in coastal waters. These studies created one of the most extensive databases ever collected on the species composition of coastal Transition Zone epipelagic nekton in the North Pacific Ocean. Catch data from two purse seine and two surface trawl surveys (one each from off northern Japan and eastern Russia and off the West Coast of the U.S.) were examined using multivariate techniques to analyze the community structure of nektonic cephalopods, elasmobranchs, and teleosts in the coastal zone during the summer and autumn months. Juvenile salmonids are generally among the most common species caught, but in terms of overall abundance, other potential competitors with juvenile salmon, such as small squids and clupeoid fishes predominated the catches. Species diversity and dominance varied among areas and gear types. Distinct assemblages were found in each area, but the two regions had closely related species occupying similar ecological positions in each habitat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We examined inflow through Unimak Pass (<200 m deep), which is the only major connection between the shelves of the North Pacific Ocean and the eastern Bering Sea. Geostrophic transport was generally northward from the Gulf of Alaska into the Bering Sea. The flow through the pass appeared to be modulated by the seasonal cycle of freshwater discharge. On shorter time scales, transport also was affected by semi-daily variations in tidal mixing. This effect was significant and not anticipated. Near-bottom currents, measured from moorings, were maximum during winter, and significantly correlated (r=0.7) with the alongshore winds. Although the flow through Unimak Pass transported some nutrients from the North Pacific Ocean, the Gulf of Alaska shelf is not the major source of nutrients to the Bering Sea shelf.  相似文献   

12.
Bacterial biomass and production rate were measured in the surface (0–100 m) and mesopelagic layers (100–1,000 m) in the subarctic Pacific and the Bering Sea between July–September, 1997. Depth profiles were determined at stations occupied in oceanic domains including the subarctic gyres (western, Bering Sea, and Gulf of Alaska) and a boundary region south of the gyres. In the surface layer (0–100 m), both bacterial biomass and production were generally high in the western and Bering Sea gyres, with the tendency of decrease toward east. This geographic pattern was consistent with the dominant regime of phytoplankton biomass at the time of our survey. A significant portion of variation in bacterial production was explained by the concentration of chlorophyll a (r 2 = 0.340, n = 60, P < 0.001) and, to the greater extent, by the concentration of semilabile total organic carbon (SL-TOC = TOC at a given depth—TOC at 1,000 m, r 2 = 0.488, n = 59, P < 0.0001). Temperature significantly improved the regression model: temperature and chlorophyll jointly explained 60% of variation in bacterial production. These results support the hypothesis that bacteiral growth is largely regulated by the combination of temperature and the supply of dissolved organic carbon in subarctic surface waters. In the mesopelagic layer (100–1,000 m), the geographic pattern of bacterial production was strikingly different from the surface phytoplankton distribution: the production was high in the boundary region where the phytoplankton biomass was lowest. Bacterial growth appeared to be largely controlled by the supply of organic carbon, as indicated by the strong dependency of bacterial production on SL-TOC (r 2 = 0.753, n = 75, P < 0.0001). The spatial uncoupling between surface phytoplankton and mesopelagic bacterial production suggests that the supply rate of labile dissolved organic carbon in the mesopelagic zone does not simply reflect the magnitude of the particulate organic carbon flux in the subarctic Pacific.  相似文献   

13.
Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North‐Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co‐occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non‐crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft‐bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth‐specific isotope trends in sources and consumers, and assimilation of 15N‐depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was no direct measure of mesopelagic fishes assimilating chemosynthetic material, detection of infrequent consumption of this food resource may be hindered by the assimilation of isotopically enriched photosynthetic organic matter. By utilizing multiple dietary metrics (e.g. GCA, δ13C, δ15N, MixSIAR), this study better defined the trophic structure of mesopelagic fishes and allowed for insights on feeding, ultimately providing useful baseline information from which to track mesopelagic trophodynamics over time and space.  相似文献   

14.
根据第4次中国北极科学考察在白令海与楚科奇海进行的鱼类拖网调查资料,分析了白令海与楚科奇海鱼类生物的种类组成、优势种、物种多样性和区系特征,探讨了鱼类生物对北极气候快速变化的响应。结果表明,白令海与楚科奇海两个海域共鉴定鱼类生物14科41种;主要优势种类为粗壮拟庸鲽(Hippoglossoides robustus)、北鳕(Boreogadus saida)、短角床杜父鱼(Myoxocephalus scorpius)、斑鳍北鳚(Lumpenus fabricii)、粗糙钩杜父鱼(Artediellus scaber);从适温性来看,冷水性种类最多,有35种,冷温性种类6种;从栖息地生态类型来看,底层鱼类、近底层鱼类和中上层鱼类分别为35、5和1种;Shannon-Wiener多样性指数平均为1.21,呈现南高北低的特点,整体多样性水平不高;气候变化引起部分北极、亚北极海区鱼类出现不同程度的纬向和纵向移动,由此将引起北极渔业资源分布格局的变化。  相似文献   

15.
The shallow continental shelves and slope of the Amerasian Arctic are strongly influenced by nutrient-rich Pacific waters advected over the shelves from the northern Bering Sea into the Arctic Ocean. These high-latitude shelf systems are highly productive both as the ice melts and during the open-water period. The duration and extent of seasonal sea ice, seawater temperature and water mass structure are critical controls on water column production, organic carbon cycling and pelagic–benthic coupling. Short food chains and shallow depths are characteristic of high productivity areas in this region, so changes in lower trophic levels can impact higher trophic organisms rapidly, including pelagic- and benthic-feeding marine mammals and seabirds. Subsistence harvesting of many of these animals is locally important for human consumption. The vulnerability of the ecosystem to environmental change is thought to be high, particularly as sea ice extent declines and seawater warms. In this review, we focus on ecosystem dynamics in the northern Bering and Chukchi Seas, with a more limited discussion of the adjoining Pacific-influenced eastern section of the East Siberian Sea and the western section of the Beaufort Sea. Both primary and secondary production are enhanced in specific regions that we discuss here, with the northern Bering and Chukchi Seas sustaining some of the highest water column production and benthic faunal soft-bottom biomass in the world ocean. In addition, these organic carbon-rich Pacific waters are periodically advected into low productivity regions of the nearshore northern Bering, Chukchi and Beaufort Seas off Alaska and sometimes into the East Siberian Sea, all of which have lower productivity on an annual basis. Thus, these near shore areas are intimately tied to nutrients and advected particulate organic carbon from the Pacific influenced Bering Shelf-Anadyr water. Given the short food chains and dependence of many apex predators on sea ice, recent reductions in sea ice in the Pacific-influenced sector of the Arctic have the potential to cause an ecosystem reorganization that may alter this benthic-oriented system to one more dominated by pelagic processes.  相似文献   

16.
Benthopelagic fishes were sampled during three cruises to Seine Seamount, NE Atlantic, using bottom trawls and an epibenthic sledge. A total of 16 fish species were caught on the summit plateau of the seamount at 160–180 m depth, belonging to 15 different families. Four species were common to all types of trawls, whereas the other species were found only in part of the catches. Most fish caught were small species and typical for shelf and seamount communities. The most abundant fish was the snipefish, Macroramphosus spp., which was important also in terms of biomass. The population structure (size classes and length/weight relationships) of the five most abundant species (Macroramphosus spp., Capros aper, Anthias anthias, Callanthias ruber and Centracanthus cirrus) shows that usually two or three size classes, probably representing age groups (year classes), were present, and that growth rates were high. A stomach content analysis of these fishes revealed a predominance of pelagic prey, mainly small copepods. No indications for a seamount effect in terms of enhanced biomass or topographic blockage were found.  相似文献   

17.
A column concentration-high resolution inductively coupled plasma mass spectrometry (ICP-MS) determination was applied to measure the total dissolved concentrations of Fe, Co, Ni, Cu and Zn in seawater collected from the subarctic North Pacific (~45°N) and the Bering Sea in July–September 1997. Total adsorbable Mn was determined on board by column electrolysis preconcentration and chemiluminescence detection. The vertical profiles for Fe, Ni and Zn were nutrient-like. The deep water concentration of Fe was ~0.5 nM in the northeast Pacific (18°-140°W) and increased to ~1 nM in the northwest Pacific (161°E) and ~2 nM in the Bering Sea (57°N, 180°E). The deep water concentrations for Ni and Zn in the Bering Sea were also 1.3–2 times higher than in the North Pacific. The profiles for Co and Cu were examined in the subarctic North Pacific, and results obtained were consistent with previous reports. There was a significant correlation between the concentrations of Co and Mn except for surface mixed layer. The profiles for total adsorbable Mn were similar to the reported profiles for total dissolvable Mn. The deep water concentration of Mn in the Bering Sea was also 4 times higher than in the North Pacific. Iron and zinc were depleted in surface water of the subarctic North Pacific. The relationship between these trace elements and nutrients suggests that these elements could be a limiting factor of phytoplankton productivity. In the Bering Sea, surface water contained ~0.3 nM of Fe. The Zn concentration, which was less than the detection limit in surface water, increased at shallower depths (~30 m) compared with the subarctic North Pacific. These results imply a higher flux of Fe and Zn to surface water in the Bering Sea. This in turn may cause the ecosystem in the Bering Sea characterized by a dominance of diatoms and high regenerated production.  相似文献   

18.
Cadmium and zinc concentrations were determined in 10 species of pelagic zooplankton collected in the northern North Pacific, the Bering Sea, the Okhotsk Sea and off Hokkaid?, during the summers of 1974–1976. The mean cadmium contents in euphausiids, copepods, and amphipods were 1.16μg/g dry wt (range: 0.36–2.17μg/g), 6.63μg/g (1.66–14.55μg/g), and 8.28μg/g (2.83–14.50μg/g), respectively. Cadmium in euphausiids was significantly lower in concentration than in the other two crustacean groups. The difference in cadmium levels among the crustacean groups is discussed on the basis of feeding habits and physiological characteristics of the zooplankton. Zinc levels in the crustaceans were similar, with values around 100μg/g (range: 59–195μg/g). Both cadmium and zinc concentrations in euphausiids taken from coastal waters off Hokkaid? were significantly higher than those from the Bering Sea and the northern North Pacific. This trend may reflect coastal pollution rather than characteristics of the species. Contribution No. 117 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University  相似文献   

19.
The vertical distribution of density, salinity, temperature, dissolved oxygen, apparent oxygen utilization, nutrients, preformed phosphate, pH, alkalinity, alkalinity: chlorinity ratio, in situ partial pressure of carbon dioxide, and percent saturation of calcite and aragonite, for the Southeastern Bering Sea, is studied and explained in terms of biological and physical processes. Some hydrological interactions between the Bering Sea and the North Pacific Ocean are explained. The horizontal distribution of dissolved oxygen at 2000 and 2500 m depths, throughout the Bering Sea, indicates that deep water is flowing from the Pacific, through the Kamchatka Strait, and then northward and eastward in the Bering Sea. Based on the dissolved oxygen distribution we estimate roughly that it takes 20 years for the deep waters to move from the Kamchatka Strait to the Southeastern part of the eastern basin. The surface concentration of nutrients is higher in the Bering Sea than in the North Pacific Ocean, probably because of upwelling and intense vertical mixing in the Bering Sea. A multivariable regression analysis of dissolved oxygen as a function of phosphate concentration and potential temperature was applied for the region where the potential temperature-salinity diagram is straight, and the confidence interval of the PO4 coefficient, at the 95% probability level, was found consistent with theRedfield biochemical oxidation model. The calcium carbonate saturation calculations show that the Bering Sea is supersaturated with aragonite in the upper 100 m, and with calcite in the upper 200 m. Below these depths seawater is undersaturated with respect to these two minerals.  相似文献   

20.
Particulate matter was collected in the Bering Sea and the northern North Pacific Ocean during the cruise of R. V. Hakuho-maru, Ocean Research Institute of Tokyo University in summer of 1975. The particulate matter was analyzed for organic carbon and nitrogen, chlorophylla and amino acids.The concentrations of particulate organic carbon and nitrogen were measured with the range of 16–422gC l–1 and 1–85gN l–1, 19–186gC l–1 and 1–26gN l–1, 46–1,038gC l–1 and 6–79gN l–1 and 19–246gC l–1 and 2–25gN l–1 in the Oyashio, the Deep Bering Sea, the continental shelf of Bering Sea and the northern North Pacific, respectively. Particulate organic carbon and nitrogen decreased with depth throughout the areas. The average concentrations of organic carbon and nitrogen in the entire water column tended to decrease in the following order; the continental shelf > Oyashio > northern North Pacific > Deep Bering Sea.C/N of particulate matter varied in the range of 3–15 (7 on average) in surface waters throughout the areas and these values tended to increase with depth to 5–20 (11 on average) in deep waters without significant regional variability.Linear regressions between chlorophylla and particulate organic carbon in the euphotic layers indicate that detrital organic carbon accounted for 34.2, 44.9, 49.1 and 25.2 % of particulate organic carbon in the Oyashio, the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively.Particulate amino acid was determined in the range of 10.3–78.0g l–1, 104–156g l–1 and 10.4–96.4g l–1 in the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively. Aspartic acid, glutamic acid, serine, glycine and alanine were found as dominant species of amino acid of particulate matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号