首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
印度板块俯冲到藏南之下的深反射证据   总被引:9,自引:1,他引:9  
喜马拉雅和相邻的西藏高原,构成了地球上最大的高原和异常厚地壳的地区,是作为印度板块和亚洲板块新生代碰撞的结果,并被认作是典型的陆-陆碰撞[1.2.3.]地带。在此,我们报道了用深地震反射剖面方法进行本区地壳成像的第一个结果,试验的100km长剖面,布置在特提斯喜马拉雅(TethyanHimalaya)最南端,且跨过了喜马拉雅山脊,接近高喜马拉雅(HighHimalaya)地带,剖面显示了在地壳中部有一强反射带。它可能代表了一个活动的道冲断裂,印度板块是沿此断裂俯冲到藏南之下;上地壳反射使人们联想到上地壳存在着大规模的叠瓦状结构;莫霍反射来自本区双倍正常地壳厚度的巨厚地壳的底部。这些结果对西藏南端地壳增厚,是由于印度大陆地壳整体俯冲到包括特提斯喜马拉雅地区地壳之下的观点,给予了实质性的支持。  相似文献   

2.
本文主要介绍1992年中美喜马拉雅和青藏高原深剖面与综合研究项目第一阶段(INDEPTHI-1)广角地震观测资料利用Seis81程序(Cerveny,1981)进行二维解释所获得的帕里一达吉地带的上地壳结构特征。主要成果为:(1)前寒武结晶基底之顶界表现为R1界面。据本项目地质调查,藏南拆离系(STDS)在帕里以北约10km处出露,向北缓倾并向地下延伸。认为R1界面不仅是结晶基底之顶界的反映,而且STD可能沿着R1界面展布,也即R1界面同时是一条沉积盖层和基底之间的拆离层。R1界面埋深3±0.6—11±0.6km。(2)上述拆离层在萨马达一达吉之间,以R1界面之上的负速度梯度楔状体(LVL)为特征。LVL可能是STDS活动时拖带下沉的中生代特提斯沉积,或可能是含水破碎带。(3)在结晶基底内部存在第二条拆离带(LVZ),表现为T2反射波组。LVZ在帕里埋深8.5±0.6km,向北陡倾,至萨马达为22.5±0.6km深;再向北,倾角变缓,至达吉之下,达27±0.6km深。LVZ在帕里─萨马达之间,厚仅0.5km;至达吉,增厚至5km;也具楔形负速度梯度带性质;它可能是花岗岩局部融熔体之反映...更多。(4)在萨马达─达吉。  相似文献   

3.
中美INDEPTH项目第一阶段先导性试验,提供了高分辨率、高信噪比和反射信息非常丰富的近垂直反射剖面。其中主喜马拉雅滑脱界面(MHT)和深达70—80km的Moho,清晰可见;Moho以下仍有反射信息。事实证明.采用井深50m、药量50kg和50s超长记录长度3个技术措施后,近垂直反射技术可以取得深部反射信息。在工作中井深和激发岩性是影响记录质量的两个互相依赖的重要因素。资料分析表明.井深大于25m的单孔爆炸,其记录质量较好,而井深大于25m组合的炮记录,几乎接收不到深反射信息。钻井所采用的泥浆固井和装炸药后填井等技术措施,对提高记录质量有较大帮助。在地震数据处理工作中,针对激发岩性沿线变化剧烈,我们做了地表子波一致性处理和去噪处理,极大地提高了深反射叠加剖面的质量。  相似文献   

4.
喜马拉雅山的崛起和青藏高原的隆升被认作是印度板块和亚洲板块中、新生代以来汇聚、碰撞、挤压的结果,是典型的陆-陆碰撞地带。此文介绍了在喜马拉雅山区进行的第一次深反射地震试验的结果。试验剖面布置在北喜马拉雅地区内,从喜马拉雅山山脊南的帕里到康马南的萨马达共中15点(CMP)叠加剖面上表现出如下特点:①显示了在地壳中部有一强反射带,向北缓倾斜下去,延长达100km以上。它可能代表了一个活动的道冲断裂或是一条巨大的拆离带,印度地壳整体或下地壳沿此拆离层俯冲到藏南之下;②上部地壳的反射,显示了上地壳存在着大规模的叠瓦状结构;③下地壳的反射显示了塑性流变特征;④在测线南部莫霍反射明显,深度达72─75km,发现了南部有双莫霍层的存在;⑤试验中还取得莫霍层下面32s、38s、48s等双程走时的多条反射,均向北倾斜,反射同相轴延续较长,信息丰富,反映了上地幔的成层结构。这些结果对印度大陆地壳整体或其下地壳俯冲到藏南特提斯喜马拉雅地壳之下并导致西藏南端地壳增厚的观点给予了实质性的支持。  相似文献   

5.
揭示班公湖- 怒江(班怒)缝合带Moho(莫霍面)结构对于认识中特提斯洋壳俯冲和南羌塘坳陷成因具有重要地球动力学意义。基于横跨班怒缝合带的深反射地震数据(88°30′E),本文采用了中长波长静校正、噪声压制、优化叠加和叠前深度偏移(PSDM)等地震处理技术,获得了深度域地震反射偏移剖面、层速度场和高分辨率Moho结构。由深度域剖面显示,班怒缝合带Moho位于地表以下65~80 km,呈不连续北向抬升趋势,指示在拉萨地块与南羌塘地块之间存在岩石圈上地幔断阶,最大阶步可达15 km。综合分析缝合带两侧的Moho形态认为,这些断阶受南侧拉萨地体的岩石圈上地幔以19. 5°北倾俯冲与北侧南羌塘地块的上地壳抬升驱动,可能与深部存在局部熔融相关。班怒缝合带下的Moho结构表明,随着晚侏罗世—早白垩世中特提斯洋闭合,南羌塘地体由边缘海沉积向前陆盆地转换,形成南羌塘坳陷。  相似文献   

6.
我们已推出一种二维有限差分时间域(FDTD)偏移算法,有限差分方法的优点在于它能很地应用于各种电导率背景模型,比较FDTD算法和积分方程(IE)算法的电磁偏移计算结果表明,有限差分法结果比IE结果能更好地反映电导异常,对于含有榀 的数据也可提供稳定的图像。Mindco的地球物理学家们,跨跃日本的Awaji岛的Nojima断裂带,开展了TDEM法工作,并利用有限差分偏移方法测定了与断裂有关的导电破碎  相似文献   

7.
地震层析对印度板块向北俯冲的认识   总被引:6,自引:0,他引:6  
薛光琦  宿和平  钱辉  姜枚 《地质学报》2006,80(8):1156-11601237
通过对中美合作Hi-CLIMB项目在尼泊尔境内及西藏萨嘎以南采集的宽频地震数据的分析研究,笔者用远震层析反演方法对喜马拉雅—西藏碰撞带之下一些关键地段的关键性深部信息进行探讨,进一步证实印度板块在向北俯冲时,引发最剧烈的构造变形发生在其前缘并展示了向北缓倾的主边界断裂(MBT)和3次出现在剖面上的主中央断裂(MCT)的赋存特征;另外,自尼泊尔南缘至雅鲁藏布江断裂处有一条向北缓倾的界面,南端深为10km左右,北端约为25km;由于俯冲、挤压和缩短造成了高喜马拉雅和特提斯喜马拉雅地壳增厚并由此造成了热地壳以及壳内局部熔融存在的现实。  相似文献   

8.
阎全人  王诚 《广西地质》2000,13(3):13-17
文章利用天然地震的PS转换波研究了北部湾陆缘地区的地壳结构特征。PS转换波测量表明:本区地壳内部在4个明显的转换界面:PSC、PSG、PSM、PSM1,分别代表上地壳、中地壳底界以及Moho面(下地壳底界)和上地幔顶的第一转换面。计算结果表明,本区上地壳厚约12km,中地壳厚约9km,下地壳厚约11km,Mobo面深约32km。地壳厚度(或Mobo面深度)由海向陆变厚(或变深),由内陆的灵山到海陆  相似文献   

9.
作为新能源与工业技术开发机构(NEDO)正在实施的“深部地热资源调查(DSGR)”计划的一部分内容,目前正在研制“垂直电磁剖面测量(VEMP)方法,以便 获得精确的深部电磁率结构,VEMP法是利用地表发射的要控源(回线或接地导线源)在裸肯中采集多频三分量磁场数据。EM3-D数值模拟已表明,VEMP法的相位不仅对一般的电阻率的结构非常敏感,而且还显示出深部的异常。  相似文献   

10.
塔里木盆地原油轻烃地球化学特征   总被引:7,自引:0,他引:7  
张敏  张俊 《地球化学》1999,28(2):191-196
通过塔里木盆地540个原油要品中轻烃,尤其是C7烃类异构烷烃、环烷烃和正构烷烃的研究,认识到2-MH与3-MH化合物之间的相关性要高于2-MH与2-MP化合物之间的相关性,而MCP与MCH的化合物之间的相关性最差。原油K1值分布在0.78-1.54之间,其中80%原油样品的K1值为0.90-1.20。原油中(2-MH+2,3-DMP)与(3-MH+2,4-DMP)占总径(C4-C7)的百分比的变化  相似文献   

11.
利用冈底斯中-东部197个宽频带天然地震台站记录到的数据和远震P波走时层析成像方法,获得了该区域的P波速度扰动图像。层析成像结果显示研究区地壳和上地幔地震波速度结构存在着复杂的空间变化。首先,在藏南拆离系断层(STD)以北的特提斯喜马拉雅地壳中存在着较强的低速异常,但是该低速异常的北端在远离裂谷带的地方并没有明显越过雅鲁藏布江缝合线(YZS),这与前人的观测结果略有不同;在亚东-古露(YGR)和措美-桑日(CSR)裂谷带的下方存在低速异常,但异常强度都没有前者大;在两个裂谷带之间的拉萨地块中-南部,地壳表现为强高速特征。这些结果表明,影响青藏高原地壳构造演化的"地壳通道流(Crustal Channel Flow)"在藏南主要分布在特提斯喜马拉雅地区,在雅鲁藏布江缝合线以北的冈底斯地区,可能主要局限于沿裂谷带分布。其次,被解释为印度岩石圈地幔的上地幔高速异常,在研究区西部,抵达了雅鲁藏布江缝合线以北100km或更远的地方,而在研究区东部,并没有越过雅鲁藏布江缝合线,而是停留在缝合线以南~100km的高喜马拉雅下方,印证了前人给出的印度板块俯冲角度在研究区附近存在东西向变化的层析成像结果。此外,我们的层析成像结果还印证了冈底斯东南侧的上地幔低速异常根植于上地幔底部,我们认为该现象可能与巽他块体的顺时针旋转引起向东俯冲的缅甸弧向西后撤有关。  相似文献   

12.
Records of densely spaced shots along the Sino-US reflection line INDEPTH II at offsets between 70 and 130 km parallel to the main profile provide an image of the crust straddling the Indus-Yarlung suture. The major features are prominent reflections at about 20 km depth beneath and extending out to about 20–30 km north and south of the surface exposure of the suture, and north-dipping reflectors north of the suture. Various interpretations for the reflections are possible. (i) They represent a decollement, possibly of the Gangdise thrust system. In this scenario, the surface expression of the Gangdise thrust as mapped in eastern south Tibet is a splay with the decollement continuing southwards and either ending as a blind thrust or ramping up as one of the thrusts within the northernmost Tethyan shelf sequence. (ii) The reflections represent fabrics within gneisses, partly obliterated by intrusions reaching various levels of the crust. The reflection bands may be interpreted in terms of deformation or sedimentary structures belonging to the Indian crust, the accretionary complex, and the basement of the Gangdise belt. The intrusions could be related to the Tethyan leucogranites south of the suture (Rinbung leucogranite), and to the Gangdise magmatic arc to the north of the suture. (iii) The reflections represent a fortuitous coincidence of different features north and south of the suture. South of the suture, the reflections may record the basement–cover interface of the Indian crust or a thrust system in the Tethyan shelf. North of the suture, they may comprise different levels within the Gangdise belt and its basement. Although it is not possible to discriminate between the suggested scenarios without additional information, the seismic mapping points to the importance of post-collisional (Oligocene–Miocene) tectonics, which reshaped the suture.  相似文献   

13.
喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据   总被引:4,自引:0,他引:4  
2009~2010年在南迦巴瓦地区进行了宽频带地震和大地电磁探测,分别处理获得东构造结及其邻区的地下300km以上的P波速度图像和两条大地电磁电阻率剖面。通过资料的对比和综合解释,发现电阻率分布与地震波速有较好的对应关系。研究结果表明:南迦巴瓦变质体的上地壳部分呈现明显高速高阻特征,为两侧的雅鲁藏布江缝合带所夹持;中下地壳具有不均匀性,且普遍呈低速低阻特征;印度板块在藏东南向欧亚板块的俯冲前缘越过嘉黎断裂,抵达班公湖-怒江缝合带;在拉萨地体的高速俯冲板片以下100km至200km深度范围内存在大规模的低速异常带,其上盘中下地壳也广泛发育低速高导体,指示青藏高原东南缘可能存在韧性易流动的物质向东、东南逃逸的通道,为印度板块在南迦巴瓦的深俯冲动力学模式提供了地球物理证据。  相似文献   

14.
In February 1978 seismic-refraction profiles were recorded by the U.S. Geological Survey along a 1000 km line across the Arabian Shield in western Saudi Arabia. This report presents a traveltime and relative amplitude study in the form of velocity-depth functions for each individual profile assuming horizontally flat layering. The corresponding cross section of the lithosphere showing lines of equal velocity reaches to a depth of 60–80 km.The crust thickens abruptly from 15 km beneath the Red Sea Rift to about 40 km beneath the Arabian Shield. The upper crust of the western Arabian Shield yields relatively high-velocity material at about 10 km depth underlain by velocity inversions, while the upper crust of the eastern Shield is relatively uniform. The lower crust with a velocity of about 7 km/s is underlain by a transitional crust-mantle boundary. For the lower lithosphere beneath 40 km depth the data indicate the existence of a laterally discontinuous lamellar structure where high-velocity zones are intermixed with zones of lower velocities. Beneath the crust-mantle boundary of the Red Sea rift most probably strong velocity inversions exist. Here, the data do not allow a detailed modelling, velocities as low as 6.0 km/s seem to be encountered between 25 and 44 km depth.  相似文献   

15.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

16.
The Himalaya and Lhasa blocks act as the main belt of convergence and collision between the Indian and Eurasian plates. Their crustal structures can be used to understand the dynamic process of continent–continent collision. Herein, we present a 3D crustal density model beneath these two tectonic blocks constrained by a review of all available active seismic and passive seismological results on the velocity structure of crust and lower lithosphere. From our final crustal density model, we infer that the present subduction-angle of the Indian plate is small, but presents some variations along the west–east extension of the orogenic belt: The dip angle of the Moho interface is about 8–9° in the eastern and western part of the orogenic belt, and about 16° in the central part. Integrating crustal P-wave velocity distribution from wide-angle seismic profiling, geothermal data and our crustal density model, we infer a crustal composition model, which is composed of an upper crust with granite–granodiorite and granite gneiss beneath the Lhasa block; biotite gneiss and phyllite beneath the Himalaya, a middle crust with granulite facies and possible pelitic gneisses, and a lower crust with gabbro–norite–troctolite and mafic granulite beneath the Lhasa block. Our density structure (<3.2 g/cm3) and composition (no fitting to eclogite) in the lower crust do not be favor to the speculation of ecologitized lower crust beneath Himalaya and the southern of Lhasa block.  相似文献   

17.
The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (~ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (~ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.  相似文献   

18.
In 1991, a deep seismic reflection line, MPNI-9101, was acquired in the southern North Sea from the Mesozoic Broad Fourteens Basin, across the West Netherlands Basin onto the London-Brabant Massif (LBM). The resultant section shows a strongly reflective lower crust beneath the area of Mesozoic basin development. This lower crustal reflectivity continues to be strong beneath the LBM. The travel time to the base of the reflective zone increases from approximately 11.0 s beneath the Mesozoic basins to 12.5 s beneath the LBM, suggesting a southward thickening of the crust (Rijkers et al., 1993). Based on these travel times and information from deep wells and refraction surveys. Moho depth is estimated to increase from about 31 km beneath the Mesozoic basins to about 38 km beneath the LBM. This difference in depth to the Moho can partly be explained by coaxial stretching of the crust beneath the Mesozoic basins. In comparison with the Mesozoic basins, the crust beneath the LBM was thickened during the Caledonian and Variscan orogenies.  相似文献   

19.
[STBZ][ZW(*][HT6H]〓收稿日期:;修回日期:. *基金项目:[HT6SS][ZK(]国家重点基础研究发展计划项目“青藏高原形成对全球变化的响应与适应对策”(编号:2005CB422001);中国科学院知识创新工程重要方向项目“青藏高原内陆俯冲与造山作用”(编号:KZCX3 SW 143)资助.[ZK)] [HT6H]〓作者简介:[HT6SS](1983 ),男,海南儋州人,硕士研究生,主要从事地震波传播理论研究.[WT6HZ]E mail:[WT6BZ]youliangsu@yahoo.com.cn[ZW)] [HT4F][HT5K]()[JZ)] [HT5H][GK2] 摘〓要:[HT5K]为开展高喜马拉雅地区地质构造—气候反馈作用的研究,中国科学院青藏高原研究所于2004年开始在珠峰地区建立了综合观测研究站,并于2004年下半年开始相继开展了大气边界层(含辐射和土壤观测)、大气湍流和辐射系统、风温廓线、无线电探空系统、沙尘暴观测、冰川变化等大气科学观测研究、地表过程的环境研究和地球动力学研究。为了解珠峰站下方的地质构造,于2005年8月在综合观测研究站布设了宽频带地震仪(记录器为Reftek130,摆为STS2),并于2006年5月取得首批数据。利用宽频带地震仪提供的三分量地震波形记录,应用转换函数及快速模拟退火算法对珠峰站下的地壳横波速度结构进行了反演。反演结果表明,珠峰站的莫霍(Moho)面深度在70 km,地壳结构复杂,尤其在中上地壳,明显呈高低速互层结构,反映了板块边界处构造活动、物质交换活跃,表明这些地区还未达到均衡。为高喜马拉雅地区地质构造—气候反馈作用的研究提供地球物理依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号