首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The aim of the study was to investigate the nutrient removal rate of three wastewater protozoan isolates. The study was carried out in a laboratory-scale batch reactor for a period of 120 h. in a four batch study. Aliquot samples were withdrawn from the reactor every 24 h. for the analysis of phosphate, nitrate, nitrite, ammonia, chemical oxygen demand, dissolved oxygen and pH, using standard methods. The results obtained in the different batches among the three isolates showed PO4 2? removal rate ranging from 0.04 to 0.52 mg-PO4 2?/L/h. while NO3 ? nitrate removal rates ranged from 0.08 to 0.16 mg-NO3 ?/L /h. Also NO2- and NH3 rates were observed to range between 0.022 and 0.087 mg-NO2 ?/L /h. 0.05 and 0.16 mg-NH3 ?/L /h, respectively. For the physicochemical parameters, there was no observed COD decrease; rather there was an increase and this was irrespective of isolates and experimental batches. However, dissolved oxygen concentration decreased drastically (below 1 mg/L) at the end of each batch while pH show a decrease after an initial 24 h. period and thereafter increased. This trend was also irrespective of isolates and experimental batches. Overall, the study has been able to show the effect of the test isolates on nutrient removal rates and other physicochemical parameters (COD, DO and pH) in activated sludge mixed liquor.  相似文献   

2.
百花湖水体氮的空间分布研究   总被引:2,自引:1,他引:1  
初步探讨了百花湖水体中氮的空间分布特征,并分析了氮及溶解氧(DO)的相关性。对8个站位的表层、4m、8m及12m水体中总氮、氨氮、硝酸盐氮、亚硝酸盐氮及溶解氧进行了测定。结果表明,百花湖水体中总氮的平均含量为1.18mg/L,氨氮的平均含量为0.144mg/L,硝酸盐氮的平均含量为0.20mg/L,亚硝酸盐氮的平均含量为0.018mg/L。百花湖入湖口附近的1号采样点总氮、氨氮和硝酸盐氮的平均浓度都较其它采样点高。分析表明百花湖中DO浓度与硝酸盐氮和亚硝酸盐氮呈负相关,相关系数分别为-0.629、-0.724。   相似文献   

3.
洱海环境沉积学研究--表层沉积物营养盐与粒度分布   总被引:1,自引:0,他引:1  
李原  尚榆民 《沉积学报》2000,18(3):346-348
云南洱海表层沉积物营养盐与粒度分布的相互关系的研究结果表明 :湖泊水动力较弱的水域,TP、Fe_P、O_P与粘土矿物的相关性较好。而近岸水动力较大的水域,如河溪入湖处,有利于TN、TOC、氨氮、残留磷的富集,它们与碎屑矿物的相关性很好,如石英和方解石。另外,沉积物中粘土矿物越多,粒径越小,沉积物对磷的吸附作用就越强,在洱海这种类型的沉积物主要分布在远岸深水 -较深水的北部湖心。  相似文献   

4.
 The concentrations of N, P and Fe in surface sediments and interstitial and overlying (bottom and surface) waters of the Ashtamudi estuary located in the southwest coast of India are reported along with the various chemical species of N (NO2–N, NO3–N, NH3–N and total N) and P (organic P, inorganic P and total P) in interstitial and overlying waters and discussed in terms of the physico-chemical environment of the system. The interstitial water exhibits higher salinity values compared to bottom and surface waters, indicating the coupled effects of salt-wedge phenomena and gravitational convection of more saline-denser marine water downward through surface sediments. N, P and Fe as well as their chemical forms are enriched in the interstitial water compared to bottom and surface waters. However, the dissolved oxygen (DO) shows an opposite trend. The marked enrichment of NH3–N in the interstitial water and its marginal presence in bottom and surface waters, together with the substantial decrease in the DO concentrations of bottom water and consequent increase in the concentrations of NO2–N and NO3–N in interstitial and bottom waters, points to the nitrification process operating in the sediment-water interface of the Ashtamudi estuary. The enrichment of total N, P and Fe in the interstitial water compared to the overlying counterparts and the positive correlation of sediment N, P and Fe with mud contents as well as organic carbon indicate that these elements are liberated during the early diagenetic decomposition of organic matter trapped in estuarine muds. Received: 5 Oktober 1998 · Accepted: 9 February 1999  相似文献   

5.
Accurate prediction of the chemical constituents in major river systems is a necessary task for water quality management, aquatic life well-being and the overall healthcare planning of river systems. In this study, the capability of a newly proposed hybrid forecasting model based on the firefly algorithm (FFA) as a metaheuristic optimizer, integrated with the multilayer perceptron (MLP-FFA), is investigated for the prediction of monthly water quality in Langat River basin, Malaysia. The predictive ability of the MLP-FFA model is assessed against the MLP-based model. To validate the proposed MLP-FFA model, monthly water quality data over a 10-year duration (2001–2010) for two different hydrological stations (1L04 and 1L05) provided by the Irrigation and Drainage Ministry of Malaysia are used to predict the biochemical oxygen demand (BOD) and dissolved oxygen (DO). The input variables are the chemical oxygen demand (COD), total phosphate (PO4), total solids, potassium (K), sodium (Na), chloride (Cl), electrical conductivity (EC), pH and ammonia nitrogen (NH4-N). The proposed hybrid model is then evaluated in accordance with statistical metrics such as the correlation coefficient (r), root-mean-square error, % root-mean-square error and Willmott’s index of agreement. Analysis of the results shows that MLP-FFA outperforms the equivalent MLP model. Also, in this research, the uncertainty of a MLP neural network model is analyzed in relation to the predictive ability of the MLP model. To assess the uncertainties within the MLP model, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPU) and the band width of 95 percent confidence intervals (d-factors) are selected. The effect of input variables on BOD and DO prediction is also investigated through sensitivity analysis. The obtained values bracketed by 95PPU show about 77.7%, 72.2% of data for BOD and 72.2%, 91.6% of data for DO related to the 1L04 and 1L05 stations, respectively. The d-factors have a value of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to the 1L04 and 1L05 stations, respectively. Based on the values in both stations for the 95PPU and d-factor, it is concluded that the neural network model has an acceptably low degree of uncertainty applied for BOD and DO simulations. The findings of this study can have important implications for error assessment in artificial intelligence-based predictive models applied for water resources management and the assessment of the overall health in major river systems.  相似文献   

6.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

7.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

8.
《Resource Geology》2018,68(3):244-257
Alternation layered lake sediment that had accumulated over a period of 22 years, from 1990 to 2012, was collected from the Tamagawa Dam Lake, which is located in the northeastern part of Akita Prefecture. The lake water is acidified (pH = 4.1) by the inflow of high‐acidic thermal water (pH = 1.2) from the Obuki Hot Spring, the main hot spring in the Tamagawa Hot Spring area. The vertical variations in Si, Al, Fe, Ti, and Pb contents of the sediment were determined by XRF, EPMA, and LA‐ICP‐MS in order to clarify the sedimentation processes of the lake sediment. The layers consisting of the sediment could be mostly classified into three types: dark brown, yellowish brown, and reddish layers. The contents of Si, Al, Fe, and Ti corresponded to the variation in color of each layer in the sample. Based on the Si, Al, and Fe contents in the sediment of Tamagawa Dam Lake, the sources of these elements were classified as detrital origin in dark brown and yellowish brown layers (Si, Al, and Ti) and chemical precipitate origin in reddish layers (Fe). Detrital components were derived from volcanic rocks in the watershed of Tamagawa Dam Lake. The variation of Pb content did not accord with the color of layers. The content of Pb in the sediment of Tamagawa Dam Lake ranges from 45 to 522 ppm. The vertical variation of Pb content in sediment corresponded to the temporal variation of Pb content in thermal water from the Obuki Hot Spring from 1990 to 2012. A large influence of hydrothermal activity of the Tamagawa Hot Spring on the vertical distribution of Pb was found during the active period of the Obuki Hot Spring, resulting in high Pb content within layers at 5–8 cm from the bottom of the sample. T‐Fe2O3‐rich reddish layers were also found in this range. Therefore, it is assumed that T‐Fe2O3 and Pb originated from Obuki Hot Spring and precipitated in Tamagawa Dam Lake. However, no correlation was found between T‐Fe2O3 and Pb contents for any of the dark brown, yellowish brown, and reddish layers. Some layers with high Pb content were also found to have high SiO2 and Al2O3 contents. These findings indicate that there are several possibilities for the sedimentation process of Pb. The sedimentation of Pb as well as that of T‐Fe2O3 in Tamagawa Dam Lake provides a good example of the accumulation of elements by chemical precipitation away from the source of elements.  相似文献   

9.
Enrichment of molybdenum (Mo) in reducing sediments due to authigenic fixation in anoxic interstitial waters could provide an indicator of hypoxic conditions that integrates over substantial temporal extents. Sediments maintained under controlled dissolved oxygen (DO) conditions showed elevated concentrations of Mo when exposed to low DO concentrations. Mo accumulation was linearly related to time of exposure in treatments below 2.8 mg O2/L, with less or no accumulation at higher concentrations. Rates of accumulation were independent of DO concentration below 2.8 mg/L. Accumulation occurred at DO concentrations higher than those limiting accumulation in field settings, with rates in the lowest treatments similar to those in sediments of deep basins with restricted circulation and low DO concentrations.  相似文献   

10.
This paper describes the application of multi-layer perceptron (MLP), radial basis network and adaptive neuro-fuzzy inference system (ANFIS) models for computing dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) levels in the Karoon River (Iran). Nine input water quality variables including EC, PH, Ca, Mg, Na, Turbidity, PO4, NO3 and NO2, which were measured in the river water, were employed for the models. The performance of these models was assessed by the coefficient of determination R 2, root mean square error and mean absolute error. The results showed that the computed values of DO, BOD and COD using both the artificial neural network and ANFIS models were in close agreement with their respective measured values in the river water. MLP was also better than other models in predicting water quality variables. Finally, the sensitive analysis was done to determine the relative importance and contribution of the input variables. The results showed that the phosphate was the most effective parameters on DO, BOD and COD.  相似文献   

11.
In order to determine how As speciation in lacustrine sediment changes as a function of local conditions, sediment cores were taken from three lakes with differing hydrologic regimes and subjected to extensive chemical and TEM analysis. The lakes (Killarney, Thompson and Swan Lakes) are located within the Coeur d’ Alene River system (northern Idaho, USA), which has been contaminated with trace metals and As, from over 100 a of sulfide mining. Previous analyses of these lakebed sediments have shown an extensive amount of contaminant metals and As associated with sub-μm grains, making them extremely difficult to analyze using standard methods (scanning electron microscopy, X-ray diffraction). Transmission electron microscopy offers great advantages in spatial resolution and can be invaluable in determining As speciation when combined with other techniques. Data indicate that because of differences in local redox conditions, As speciation and stability is dramatically different in these lakes. Killarney and Thompson Lakes experience seasonal water-level fluctuations due to drawdown on a downstream dam, causing changes in O2 content in sediment exposed during drawdown. Swan Lake has relatively constant water levels as its only inlet is dammed. Consequently, Killarney and Thompson Lakes show an increase in labile As-bearing phases with depth, while Swan Lake data indicate stable As hosts throughout the sediment profile. Based on these observations it can be stated that As in lakebed sediments is much less mobile, and therefore less bioavailable, when water is kept at a constant level.  相似文献   

12.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   


13.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

14.
A large portion of water is consumed during various textile operations thereby discharging wastewaters with pollutants of huge environmental concern. The treatment of such wastewaters has promising impact in the field of environmental engineering. In this work, Fenton oxidation treatment was engaged to treat simulated textile wastewater. Box–Behnken design and response surface methodology were employed to optimize the efficiency of Fenton process. Iron dose, peroxide dose and pH were considered as input variables while the responses were taken as chemical oxygen demand and color removal. A total of 17 experiments were conducted and analyzed using second-order quadratic model. The quadratic models generated for chemical oxygen demand and color removal efficiencies were validated using analysis of variances, and it was found that the experimental data fitted the second-order model quite effectively. Analysis of variances demonstrated high values of coefficient of determination (R 2) for chemical oxygen demand and color removal efficiencies with values of 0.9904 and 0.9963 showing high conformation of predicted values to the experimental ones. Perturbation plots suggested that the iron dosage produced the maximum effect on both chemical oxygen demand and color removal efficiencies. The optimum parameters were determined as Fe2+ dose—550 mg/L, H2O2 dose—5538 mg/L, pH—3.3 with corresponding chemical oxygen demand and color removal efficiencies of 73.86 and 81.35%. Fenton process was found efficient in treatment of simulated textile wastewater, and optimization using response surface methodology was found satisfactory as well as relevant. From the present study, it can also be concluded that if this method is used as pretreatment integrated with biological treatment, it can lead to eco-friendly solution for treatment of textile wastewaters.  相似文献   

15.
Wetland is a transition zone between terrestrial and aquatic ecosystems, and is the source and sink of various biogenic elements in the earth’s epipelagic zone. In order to investigate the driving force and coupling mechanism of carbon (C), nitrogen (N) and phosphorus (P) migration in the critical zone of lake wetland, this paper studies the natural wetland of Dongting Lake area, through measuring and analysing the C, N and P contents in the wetland soil and groundwater. Methods of Pearson correlation, non-linear regression and machine learning were employed to analyse the influencing factors, and to explore the coupling patterns of the C, N and P in both soils and groundwater, with data derived from soil and water samples collected from the wetland critical zone. The results show that the mean values of organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in groundwater are 1.59 mg/L, 4.19 mg/L and 0.5 mg/L, respectively, while the mean values of C, N and P in the soils are 18.05 g/kg, 0.86 g/kg and 0.52 g/kg. The results also show that the TOC, TN and TP in the groundwater are driven by a variety of environmental factors. However, the concentrations of C, N and P in the soils are mainly related to vegetation abundance and species which influence each other. In addition, the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve, respectively. In order to establish a multivariate regression model, the soil N and P contents were used as the input parameters and the soil C content used as the output one. By comparing the prediction effects of machine learning and nonlinear regression modelling, the results show that coupled relationship equation for the C, N and P contents is highly reliable. Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.  相似文献   

16.
洱海环境沉积学研究——表层沉积物营养盐与粒度分布   总被引:2,自引:0,他引:2  
云南洱海表层沉积物营养盐与粒度分布的相互关系的研究结果表明:湖泊水动力较弱的水域,TP、Fe-P、O-P与粘土矿物的相关性较好。而近岸水动力较大的水域,如河溪入湖处,有利于TN、TOC、氨氮、残留磷的富集,它们与碎屑矿物的相关性很好,如石英和方解石。另外,沉积物中粘土矿物越多,粒径越小,沉积物对磷的吸附作用就越强,在洱海这种类型的沉积物主要分布在远岸深水-较深水的北部湖心。  相似文献   

17.
The biogeochemistry of organic lacustrine sediments (sapropels) has been poorly studied in Siberia. In this paper we show the specifics of sapropel formation caused by low pH and mineralization of water by the example of Lake Ochki in Cisbaikalia. The main sources of organic matter are zoo- and phytoplankton, which concentrate mostly basic chemical elements and also some alkaline, alkali-earth, and chalcophile elements and move them to the sediment. The calculated enrichment factors (EF) have shown that the lake plankton is strongly enriched with phosphorus and chalcophile elements. The calculations have also revealed a great contribution of the plankton to the elemental composition of sapropel (Mebio, %): P (-100), Cd (57), Br (45), Hg (40), Se and Na (30), Zn (23), K (21), and Ca (15). Elements are rather uniformly distributed throughout the 3.2 m thick sapropel layer. Lithophile elements (Al, Sc, Ti, Y, Zr, Nb) and LREE are mostly from a terrigenous source. The high contents of mobile elements (Cd, Sb, Sn, Pb, Zn) in the upper part of sapropel are probably due to anthropogenic factors. The high Cu and Zn contents in some sapropel layers are probably related to the inflow of deep-level groundwaters, and the elevated contents of Hg, Cd, and Sb might have been caused by forest fires.  相似文献   

18.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

19.
The optimization for poly-β-hydroxyalkanoate production was carried out with nutrient removal efficiency for total organic carbon (TOC), phosphate, and nitrate from palm oil mill effluent waste. The experiment was conducted in a fabricated fed-batch reactor and the data obtained was analyzed using central composite rotatable design and factorial design for response surface methodology as a systematic approach for designing the experiment statistically to obtain valid results with minimum effort, time, and resources. The analysis of numerical optimization with propagation of error showed that 66 % of poly-β-hydroxyalkanoate production can be obtained with nutrient removal of TOC and nitrate by 19 and 3 %, respectively. However, phosphate removal efficiency was not found to be much effective. More over, the chemical oxygen demand: nitrogen phosphate (509 g/g N), chemical oxygen demand: phosphate (200 g/g P), air flow rate (0.59 L/min), substrate feeding rate (20 mL/min), and cycle length (20 h) were the optimized variables for maximum poly-β-hydroxyalkanoate production and nutrient removal.  相似文献   

20.
Removal of Congo red from textile wastewater by ozonation   总被引:7,自引:6,他引:1  
Congo red, which has a complex molecular structure with various diazo aromatic groups, is widely used in textile industry as an anionic dye. The purpose of this study was to investigate the degradation of Congo red in laboratory solution which had the chemical properties of the rinse waters of textile manufacturing dye-houses and the samples with Congo red alone wastewater by ozonation and to optimize the reaction parameters such as pH and time which influence the efficiencies of total organic carbon, total kjeldahl nitrogen and chemical oxygen demand removal. Ozonation of Congo red dye were carried out in a semi-batch reactor with constant ozone flow rate and concentration of 23 mL/sec and 13.6 mg/L, respectively. Decolorization was complete within a few minutes of ozonation possibly due to the cleavage of chromophore groups. It was observed that its structural destruction occurs predominantly at higher pHs. The reduction of chemical oxygen demand and destruction of the dye was more than 60 % and 42 %, respectively. Total kjeldahl nitrogen removal was accompanied by slight changes in nitrogen oxides. It can be deduced from the experimental results that: (a) the mineralization is very weak; (b) the reaction follows the indirect mechanism; i.e., the interaction of hydroxyl radicals with the dye and (c) the nitrification is rather predominant. Biological oxygen demand is declined in simulated alkalic and neutral samples respectively. At 13.6 mg O3/L, the biological oxygen demand levels were significantly enhanced. This might be attributable to the enhancement of its biodegradation at alkaline pHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号