首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We calculate the GeV afterglow emission expected from a few mechanisms related to gamma-ray bursts (GRBs) and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift /X-Ray Telescope, Gamma-ray Large Area Space Telescope (GLAST)/Large Area Telescope (LAT) should detect the self-Compton emission from the forward shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.  相似文献   

2.
In Paper I, we presented a detailed formulation of the relativistic shocks and synchrotron emission in the context of gamma-ray burst (GRB) physics. To see how well this model reproduces the observed characteristics of the GRBs and their afterglows, here we present the results of some simulations based on this model. They are meant to reproduce the prompt and afterglow emissions in some intervals of time during a burst. We show that this goal is achieved for both short and long GRBs and their afterglows, at least for part of the parameter space. Moreover, these results are evidence of the physical relevance of the two phenomenological models we have suggested in Paper I for the evolution of the active region – synchrotron emitting region in a shock. The dynamical active region model seems to reproduce the observed characteristics of prompt emissions and late afterglow better than the quasi-steady model which is more suitable for the onset of afterglows. Therefore, these simulations confirm the arguments presented in Paper I about the behaviour of these models based on their physical properties.  相似文献   

3.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

4.
胡方浩 《天文学报》2011,52(4):288-296
某些伽玛射线暴(简称伽玛暴)的中心致密天体可能是一颗具有强磁场的毫秒脉冲星,它通过磁偶极辐射可对伽玛暴外激波注入能量,从而导致早期余辉光变曲线的变平.近年来,从Swift卫星观测到的大量伽玛暴X射线余辉中发现,很多X射线余辉光变曲线在暴后10~2~10~4s期间的确存在明显的变平现象.利用周期为毫秒量级的磁星能量注入模型对11个加玛暴的X射线余辉光变曲线进行了拟合,显示该模型在解释余辉变平现象上的有效性和广泛性,通过对余辉光变曲线的拟合,同时也给出了相关中心磁星的磁场强度和旋转周期.  相似文献   

5.
We present the observations of cosmic gamma-ray bursts (GRBs) with the main detector of the SIGMA telescope onboard the Granat Observatory from January 1990 through September 1994. The observations were carried out in the energy range 35–1300 keV. We detected 36 GRBs and 31 high-energy solar flares during this period. No GRB fell within the main field of view; they were all recorded by the “secondary optics” of the telescope. The SIGMA telescope recorded relatively bright bursts with peak fluxes of 10?6–10?4 erg s?1 cm?2 in the 100–500-keV energy band. Stable detector background allows the long-term variability of GRB sources on a time scale of ~1000 s to be studied. The results of our search for early afterglows of GRBs are presented. The flux averaged over all bursts in the interval 100–800 s after the main event is 0.36±0.14 counts s?(35–300 keV), suggesting that there is soft gamma-ray emission on this time scale after a considerable number of GRBs.  相似文献   

6.
We propose that gamma-ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma-ray emission is produced in the shocks these bullets drive into the surrounding medium. The short-term variability seen in GRBs is set by the slowing-down time of the bullets, while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. The efficiency of the burst can be relatively high.  相似文献   

7.
The gamma-ray burst (GRB) 021211 had a simple light curve, containing only one peak and the expected Poisson fluctuations. Such a burst may be attributed to an external shock, offering the best chance for a unified understanding of the gamma-ray burst and afterglow emissions. We analyse the properties of the prompt (burst) and delayed (afterglow) emissions of GRB 021211 within the fireball model. Consistency between the optical emission during the first 11 min (which, presumably, comes from the reverse shock heating of the ejecta) and the later afterglow emission (arising from the forward shock) requires that, at the onset of deceleration (∼2 s), the energy density in the magnetic field in the ejecta, expressed as a fraction of the equipartition value  (ɛ B )  , is larger than in the forward shock at 11 min by a factor of approximately 103. We find that synchrotron radiation from the forward shock can account for the gamma-ray emission of GRB 021211; to explain the observed GRB peak flux requires that, at 2 s,  ɛ B   in the forward shock is larger by a factor 100 than at 11 min. These results suggest that the magnetic field in the reverse shock and early forward shock is a frozen-in field originating in the explosion and that most of the energy in the explosion was initially stored in the magnetic field. We can rule out the possibility that the ejecta from the burst for GRB 021211 contained more than 10 electron–positron pairs per proton.  相似文献   

8.
Variability on time scales δt < t is observed on numerous occasions in the afterglows of cosmic gamma-ray bursts (GRBs). It is well known that the radiation originating in an external shock produced by the interaction of an ultrarelativistic jet with the ambient interstellar medium should not contain such variability within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and, in some instances, are inconsistent with observations. On the other hand, if the motion is not relativistic, then the rapid afterglow variability can be explained much more easily. Various estimates of the transition time to a nonrelativistic motion in a GRB source are discussed in this connection. It has been shown that this transition should occur on an observed time scale of ~10 days. In the case of a higher density of the surrounding material, ~102?104 cm?3, or a stellar wind with ? ~ 10?5?10?4 M yr?1, the transition to a nonrelativistic motion can occur on a time scale of ~1 day. Such densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.  相似文献   

9.
林一清 《天文学报》2007,48(4):428-432
Swift卫星的X射线望远镜观测揭示部分伽玛暴的早期余辉光变曲线有一个缓慢衰减的成分,而相当一部分却没有这样的成分.研究比较这两种暴的观测性质发现两类暴的持续时间、伽玛辐射总流量、谱指数、谱硬度比峰值能量等物理量均没有显著差异.然而有该成分的那些伽玛暴谱比较软、早期X射线余辉比较弱、伽玛射线辐射效率显著高于没有这个成分的那些暴.结果表明两类暴的前身星和中心机制一致,是否呈现这个缓慢衰减成分可能取决于外部介质.  相似文献   

10.
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma-rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of ∼GeV–TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high-energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically     . Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favourable targets to detect pair echoes may be the 'naked' GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30–300 s.  相似文献   

11.
While analyzing the archival data of the INTEGRAL observatory, we detected and localized a cosmic gamma-ray burst recorded on April 28, 2006, by the IBIS/ISGRI and SPI telescopes in their fields of view. Since the burst was not revealed by the INTEGRAL burst alert system (IBAS), information about its coordinates was not distributed in time and no search for its afterglow was conducted. The burst was recorded by the KONUS/WIND and RHES SI satellites. Its 20–200-keV fluence was 2.3 × 10?6 erg cm?2, the peak flux was 3.6 × 10?7 erg cm?2 s?1 (3.9 phot. cm?2 s?1). The burst had a complex multipeaked profile and stood out among typical bursts by an increase in its hardness with time. At the flux peak, the spectrum was characterized by a photon index α ? ?1.5 and a peak energy E p ? 95 keV. The burst lasted for ~12 s, after which its afterglow decaying as a power law with an index γ ~ ?4.5 was observed at energies 15–45 keV. The spectral hardness decreased noticeably during the afterglow.  相似文献   

12.
GRBs are the most energetic combination of jets and disks in the Universe. Observations made using Swift reveal a complex temporal and spectral behaviour. We propose that this behaviour can be used to refine the GRB classification scheme and align it better with progenitor types. The early (prompt) X-ray light curve can be well described by an exponential which relaxes into a power law. The transition time between the exponential and the power law gives a well-defined timescale, T p , for the burst duration which we use with the spectral index of the prompt emission, β p , and the prompt power law decay index, α p to define four classes of burst: short, slow, fast and soft. Short bursts tend to decline more gradually than long bursts. Most GRBs display a second “afterglow” component which can be fitted in a similar way to the early emission. During the decay of this second component, few GRBs show jet breaks in accord with pre-Swift predictions. However, the start time of the final afterglow decay, T a , correlates with the peak of the prompt γ-ray emission spectrum, E peak, in an analogous way to the Ghirlanda relation found between optical “jet-break” times, t j , and E peak. These data are inconsistent with simple achromatic jet-break models casting doubt on the reliability of using late temporal breaks to determine the jet collimation.  相似文献   

13.
We assume that internal shocks of gamma-ray bursts (GRBs) consist of multiple sub-jets with a collimation half-angle of about several times gamma-1i, where gammai is the Lorentz factor of each sub-jet. If by chance a sub-jet is first emitted off-axis from the line of sight, the observed peak energy can be in the X-ray region. Next, if by chance a subsequent sub-jet is emitted along the line of sight, then the peak energy will be in the gamma-ray region and the gamma ray may arrive after the X-ray precursor from the former sub-jet depending on parameters. This model predicts a new class of GRBs with extremely weak and short gamma-ray emission but X-ray precursors and/or postcursors as well as an afterglow.  相似文献   

14.
We searched for anomalously long gamma-ray bursts (GRBs) in the archival records of the Burst and Transient Sources Experiment (BATSE). Ten obvious superlong (>500 s) GRBs with almost continuous emission episodes were found. Nine of these events were known from the BATSE catalog, but five had no duration estimates; we found one burst for the first time. We also detected events with emission episodes separated by a long period of quiescence (up to ~1000 s) with a total duration of 1000–2000 s. In the latter case, we cannot reach an unequivocal conclusion about a common origin of the episodes due to the BATSE poor angular resolution. However, for most of these pairs, the probability of independent GRBs coinciding is much lower than unity, and the probability that all of these are coincidences is ~10?8. All of the events have a hardness ratio (the ratio of the count rates in different energy channels) typical of GRBs, and their unique duration is unlikely to be related to their high redshifts. Superlong bursts do not differ in their properties from typical long (>2 s) GRBs. We estimated the fraction of superlong GRBs (>500 s) among the long (>2 s)GRBs in the BATSE sample with fluxes up to 0.1 ph cm?2 s?1 to be between 0.3 and 0.5%, which is higher than the estimate based on the BATSE catalog.  相似文献   

15.
A gamma-ray burst (GRB) optical photometric follow-up system at the Xinglong Observatory of National Astronomical Observatories of China (NAOC) has been constructed. It uses the 0.8-m Tsinghua-NAOC Telescope (TNT) and the 1-m EST telescope, and can au-tomatically respond to GRB Coordinates Network (GCN) alerts. Both telescopes slew rela-tively fast, being able to point to a new target field within ~ 1 min upon a request. Whenever available, the 2.16-m NAOC telescope is also used. In 2006 the system responded to 15 GRBs and detected seven early afterglows. In 2007 six GRBs have been detected among 18 follow-up observations. TNT observations of the second most distant GRB 060927 (z = 5.5) are shown, which started as early as 91 s after the GRB trigger. The afterglow was detected in the combined image of the first 19 × 20 s unfiltered exposures. This GRB follow-up system has joined the East-Asia GRB Follow-up Observation Network (EAFON).  相似文献   

16.
It is widely accepted that many gamma-ray bursts (GRBs) are produced by relativistic jets. Previous studies on the beaming effects in GRBs are mainly based on the conical geometry. However, some observations of the relativistic jets in radio galaxies, active galactic nuclei, and “micro-quasars” have shown that many of these outflows are cylindrical, but not conical. In this study, we assume that the jets that produce GRBs are cylindrical, and that the circum-burst environment is dense and optically thick. In the prompt burst phase, the strong X-ray emission can sublimate the circum-burst medium to form an optically thin channel, from which the optical photons are allowed to escape. As a result, the optical afterglows can be observed only for the observers who are positioned on the axes of jets. It is shown that the observed optical afterglows usually decay very rapidly (in the form of Sv oc t^v^l1 where p is the index of electron power-law distribution), due to the joint effect of the lateral expansion of the cylindrical jet and the absorption of optical photons by the dust outside the channel. Our model provides a possible explanation for the dark gamma-ray bursts.  相似文献   

17.
There has been increasing evidence that at least some gamma-ray bursts (GRBs) are emission beamed. The beamed GRB-afterglow evolution has been discussed by several authors in the ultrarelativistic case. It has been shown that the dynamics of the blast wave will be significantly modified by the sideways expansion, and there may be a sharp break in the afterglow light curves under certain circumstances. However, this is only true when the fireball is still relativistic. Here we present an analytical approach to the evolution of the beamed GRB blast wave expanding in the surrounding medium (density     in the non-relativistic case, our purpose is to explore whether the sideways expansion will strongly affect the blast-wave evolution as in the relativistic case. We find that the blast-wave evolution is strongly dependent on the speed of the sideways expansion. If it expands with the sound speed, then the jet angle θ increases with time as     which means that the sideways expansion has little effect on the afterglow light curves, the flux     for     and     for     It is clear that the light curve of     is not always steeper than that of     as in the relativistic case. We also show that if the expansion speed is a constant, then the jet angle     and the radius     in this case the sideways expansion has the most significant effect on the blast-wave evolution, the flux     independent of s , and we expect that there should be a smooth and gradual break in the light curve.  相似文献   

18.
The huge energies involved in gamma-ray bursts (GRBs) coupled with the short emission time scales unavoidably imply that the emitting source is moving relativistically, with a speed close to that of light. Here we present the REM telescope observations of the early-time near-infrared light curves of the GRB 060418 and GRB 060607A afterglows. The detection of the afterglow peak provides for the first time a direct measurement of the initial Lorentz factor Γ0 of the radiating material. We find that the emitting region was indeed highly relativistic in the first seconds after the explosions, with Γ0∼400. Comparison with the Lorentz factor as determined at later epochs provides direct evidence that the emitting shell is decelerating and confirms that the afterglow emission is powered by the dissipation of bulk kinetic energy. The deceleration radius was inferred to be R dec≈1017 cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB. Susanna D. Vergani on behalf of the REM collaboration.  相似文献   

19.
Relativistic shocks can accelerate particles by the first-order Fermi mechanism; the particles then emit synchrotron emission in the post-shock gas. This process is of particular interest in the models used for the afterglow of gamma-ray bursts. In this paper we use recent results in the theory of particle acceleration at highly relativistic shocks to model the synchrotron emission in an evolving, inhomogeneous and highly relativistic flow. We have developed a numerical code that integrates the relativistic Euler equations for fluid dynamics with a general equation of state, together with a simple transport equation for the accelerated particles. We present tests of this code and, in addition, we use it to study the gamma-ray burst afterglow predicted by the fireball model, along with the hydrodynamics of a spherically-symmetric relativistic blast wave.
We find that, while broadly speaking the behaviour of the emission is similar to that already predicted with semi-analytic approaches, the detailed behaviour is somewhat different. The 'breaks' in the synchrotron spectrum behave differently with time, and the spectrum above the final break is harder than had previously been expected. These effects are due to the incorporation of the geometry of the (spherical) blast wave, along with relativistic beaming and adiabatic cooling of the energetic particles leading to a mix, in the observed spectrum, between recently injected 'uncooled' particles and the older 'cooled' population in different parts of the evolving, inhomogeneous flow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号