首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
High energy emission (> tens MeV) of Gamma-Ray Bursts (GRBs) provides an important clue on the physical processes occurring in GRBs that may be correlated with the GRB early afterglow. A shallow decline phase has been well identified in about half of Swift Gamma-ray Burst X-ray afterglows. The widely considered interpretation involves a significant energy injection and possibly time-evolving shock parameter(s). We calculate the synchrotron-self-Compton (SSC) radiation of such an external forward shock and show that it could explain the well-known long term high energy (i.e., tens MeV to GeV) afterglow of GRB 940217. We propose that cooperation of Swift and GLAST will help to reveal the nature of GRBs.  相似文献   

2.
We present broadband (radio,optical,X-ray and GeV) fits to the afterglow light curves and spectra of three long-duration gamma-ray bursts (GRBs 080916C,090902B,and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite.Using the observed broadband data,we study the origin of the high energy emission,and suggest that the early-time GeV emission and the late-time radio,optical,and X-ray afterglows can be understood as being due to synchrotron emissio...  相似文献   

3.
胡方浩 《天文学报》2011,52(4):288-296
某些伽玛射线暴(简称伽玛暴)的中心致密天体可能是一颗具有强磁场的毫秒脉冲星,它通过磁偶极辐射可对伽玛暴外激波注入能量,从而导致早期余辉光变曲线的变平.近年来,从Swift卫星观测到的大量伽玛暴X射线余辉中发现,很多X射线余辉光变曲线在暴后10~2~10~4s期间的确存在明显的变平现象.利用周期为毫秒量级的磁星能量注入模型对11个加玛暴的X射线余辉光变曲线进行了拟合,显示该模型在解释余辉变平现象上的有效性和广泛性,通过对余辉光变曲线的拟合,同时也给出了相关中心磁星的磁场强度和旋转周期.  相似文献   

4.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

5.
We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and γ-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy >10 GeV. The >10 GeV emission had a duration about twice that of the soft γ-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.  相似文献   

6.
林一清 《天文学报》2007,48(4):428-432
Swift卫星的X射线望远镜观测揭示部分伽玛暴的早期余辉光变曲线有一个缓慢衰减的成分,而相当一部分却没有这样的成分.研究比较这两种暴的观测性质发现两类暴的持续时间、伽玛辐射总流量、谱指数、谱硬度比峰值能量等物理量均没有显著差异.然而有该成分的那些伽玛暴谱比较软、早期X射线余辉比较弱、伽玛射线辐射效率显著高于没有这个成分的那些暴.结果表明两类暴的前身星和中心机制一致,是否呈现这个缓慢衰减成分可能取决于外部介质.  相似文献   

7.
The power-law decay of the X-ray emission of gamma-ray burst (GRB) afterglows 050319, 050401, 050607, 050713A, 050802 and 050922C exhibits a steepening at about 1–4 h after the burst which, surprisingly, is not accompanied by a break in the optical emission. If it is assumed that both the optical and X-ray afterglows arise from the same outflow then, in the framework of the standard forward shock model, the chromaticity of the X-ray light-curve breaks indicates that they do not arise solely from a mechanism related to the outflow dynamics (e.g. energy injection) or the angular distribution of the blast-wave kinetic energy (structured outflows or jets). The lack of a spectral evolution accompanying the X-ray light-curve break shows that these breaks do not arise from the passage of a spectral break (e.g. the cooling frequency) either. Under these circumstances, the decoupling of the X-ray and optical decays requires that the microphysical parameters for the electron and magnetic energies in the forward shock evolve in time, whether the X-ray afterglow is synchrotron or inverse-Compton emission. For a steady evolution of these parameters with the Lorentz factor of the forward shock and an X-ray light curve arising cessation of energy injection into the blast wave, the optical and X-ray properties of the above six Swift afterglows require a circumburst medium with a r −2 radial stratification, as expected for a massive star origin for long GRBs. Alternatively, the chromatic X-ray light-curve breaks may indicate that the optical and X-ray emissions arise from different outflows. Neither feature (evolution of microphysical parameters or the different origin of the optical and X-ray emissions) was clearly required by pre-Swift afterglows.  相似文献   

8.
The discovery by Swift that a good fraction of gamma-ray bursts (GRBs) have a slowly decaying X-ray afterglow phase led to the suggestion that energy injection into the blast wave takes place several hundred seconds after the burst. This implies that right after the burst the kinetic energy of the blast wave was very low and in turn the efficiency of production of γ-rays during the burst was extremely high, rendering the internal shocks model unlikely. We re-examine the estimates of kinetic energy in GRB afterglows and show that the efficiency of converting the kinetic energy into γ-rays is moderate and does not challenge the standard internal shock model. We also examine several models, including in particular energy injection, suggested to interpret this slow decay phase. We show that with proper parameters, all these models give rise to a slow decline lasting several hours. However, even those models that fit all X-ray observations, and in particular the energy injection model, cannot account self-consistently for both the X-ray and the optical afterglows of well-monitored GRBs such as GRB 050319 and GRB 050401. We speculate about a possible alternative resolution of this puzzle.  相似文献   

9.
Gamma rays at rest frame energies as high as 90 GeV have been reported from gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is considerable hope that a confirmed GRB detection will be possible with the upcoming Cherenkov Telescope Array (CTA), which will have a larger effective area and better low-energy sensitivity than current-generation imaging atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a detection, we have developed a phenomenological model for GRB emission between 1 GeV and 1 TeV that is motivated by the high-energy GRB detections of Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray Observatory. We show a number of statistics for detected GRBs, and describe how the detectability of GRBs with CTA could vary based on a number of parameters, such as the typical observation delay between the burst onset and the start of ground observations. We also consider the possibility of using GBM on Fermi as a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM localization is problematic, the small field-of-view for IACTs can potentially be overcome by scanning over the GBM error region. Overall, our results indicate that CTA should be able to detect one GRB every 20–30 months with our baseline instrument model, assuming consistently rapid pursuit of GRB alerts, and provided that spectral breaks below ~100 GeV are not a common feature of the bright GRB population. With a more optimistic instrument model, the detection rate can be as high as 1 to 2 GRBs per year.  相似文献   

10.
In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviours in the X-ray afterglows of gamma-ray bursts (GRBs) observed with Swift , such as energetic flares and a plateau followed by a sharp drop, might be highly linearly polarized because the outflows powering these behaviours may be dominated by Poynting flux. The breakdown of the symmetry of the visible emitting region may also be well hidden in the peculiar X-ray data and may give rise to interesting polarization signatures. In this paper, we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model, which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray versus optical breaks. A detector such as the X-ray Telescope (XRT), but with polarization capability, on board a satellite like Swift would be suitable for testing our predictions.  相似文献   

11.
A systematic study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift is presented. Our sample includes 25 GRBs of which 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (Fx), the gamma-ray fluxes (5r), and the ratio (Rr,x.) are similar for the two kinds of GRBs, that any observed differences should be simply statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are of the same population with comparable total energies of explosion. The suppression of optical emission in the D-GRBs should result from circumburst but not from their central engine.  相似文献   

12.
We calculate the very high-energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton emission within the afterglow blast wave, and external inverse Compton emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift X-ray telescope (XRT) data are correct, there should be a canonical high-energy afterglow emission light curve. Our predictions can be tested with high-energy observatories such as GLAST , Whipple, HESS and MAGIC. Under favourable conditions we expect afterglow detections in all these detectors.  相似文献   

13.
In Paper I, we presented a detailed formulation of the relativistic shocks and synchrotron emission in the context of gamma-ray burst (GRB) physics. To see how well this model reproduces the observed characteristics of the GRBs and their afterglows, here we present the results of some simulations based on this model. They are meant to reproduce the prompt and afterglow emissions in some intervals of time during a burst. We show that this goal is achieved for both short and long GRBs and their afterglows, at least for part of the parameter space. Moreover, these results are evidence of the physical relevance of the two phenomenological models we have suggested in Paper I for the evolution of the active region – synchrotron emitting region in a shock. The dynamical active region model seems to reproduce the observed characteristics of prompt emissions and late afterglow better than the quasi-steady model which is more suitable for the onset of afterglows. Therefore, these simulations confirm the arguments presented in Paper I about the behaviour of these models based on their physical properties.  相似文献   

14.
If X-ray flashes (XRFs) and X-ray rich Gamma-ray Bursts (XRRGs) have the same origin as the Gamma-ray bursts (GRBs) but are viewed off-center from structured jets,their early afterglows may differ from those of GRBs,and when the ultra-relativistic outflow inter-acts with the surrounding medium,there are two shocks formed,a forward shock (FS),and a reverse shock (RS). We calculate numerically the early afterglow powered by uniform jets,Gaussian jets and power-law jets in the forward-reverse shock scenario. A set of differen-tial equations govern the dynamical evolution. The synchrotron self-Compton effect has been taken into account in the calculation. In the uniform jets,the very early afterglows of XRRGs and XRFs are significantly lower than the GRBs and the observed peak times of RS emission are later in the interstellar medium environment. The RS components in XRRGs and XRFs are difficult to detect,but in the stellar wind environment,the reduction of the very early flux and the delay of the RS peak time are not so remarkable. In nonuniform jets (Gaussian and power-law jets),where there are emission materials on the line of sight,the very early light curve resembles equivalent isotropic ejecta in general although the RS flux decay index shows notable deviations if the RS is relativistic (in stellar wind).  相似文献   

15.
We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2–3 , we detail the methods which the Swift -XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift -XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4–6 , we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.  相似文献   

16.
We study time-resolved spectra of the prompt emission of Swift γ-ray bursts (GRB). Our goal is to see if previous BATSE claims of the existence of a large amount of spectra with the low-energy photon indices harder than 2/3 are consistent with Swift data. We perform a systematic search of the episodes of the spectral hardening down to the photon indices  ≤2/3  in the prompt emission spectra of Swift GRBs. We show that the data of the Burst Alert Telescope (BAT) instrument on board of Swift are consistent with BATSE data, if one takes into account differences between the two instruments. Much lower statistics of the very hard spectra in Swift GRBs are explained by the smaller field of view and narrower energy band of the BAT telescope.  相似文献   

17.
In the relativistic fireball model, the afterglow of a gamma-ray burst (GRB) is produced by synchrotron radiation of the electrons accelerated in the external shock that emerges as the relativistic flow moves. According to this model, the afterglow peaks on a time scale of ~10 s when observed in the soft gamma-ray band. The peak flux can be high enough to be detected by modern all-sky monitors. We investigate the emission from short (ΔT<1 s) GRBs on a time scale t≈10 s using BATSE/CGRO data. A significant flux is recorded for ~20% of the events. In most cases, the observed persistent emission can be explained in terms of the model as an early burst afterglow. No early afterglows of most short GRBs are observed. The model parameters for these bursts are constrained.  相似文献   

18.
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma-rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of ∼GeV–TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high-energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically     . Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favourable targets to detect pair echoes may be the 'naked' GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30–300 s.  相似文献   

19.
The afterglow of a gamma-ray burst (GRB) is commonly thought to be the result of continuous deceleration of a relativistically expanding fireball in the surrounding medium. Assuming that the expansion of the fireball is adiabatic and that the density of the medium is a power-law function of shock radius, i.e. n ext ∝  R − k , we study the effects of the first-order radiative correction and the non-uniformity of the medium on a GRB afterglow analytically. We first derive a new relation among the observed time, the shock radius and the Lorentz factor of the fireball: t  =  R /4(4− k ) γ2c, and also derive a new relation among the comoving time, the shock radius and the Lorentz factor of the fireball: t co = 2 R /(5− k ) γc. We next study the evolution of the fireball by using the analytic solution of Blandford &38; McKee. The radiation losses may not significantly influence this evolution. We further derive new scaling laws both between the X-ray flux and observed time and between the optical flux and observed time. We use these scaling laws to discuss the afterglows of GRB 970228 and GRB 970616, and find that if the spectral index of the electron distribution is p  = 2.5, implied from the spectra of GRBs, the X-ray afterglow of GRB 970616 is well fitted by assuming k  = 2.  相似文献   

20.
伽马射线暴是宇宙中最剧烈的爆发现象之一.Swift卫星的快速定位和Fermi卫星的宽、高能段观测,使得伽马暴的观测可以全波段进行.通过Swift的观测可以对伽马暴现象的本质有进一步的理解,而Fermi卫星提供了一些暴高能光子的辐射数据,为进一步研究暴的辐射机制和伽马暴以及它的余辉提供了有力的依据.介绍了Swift和Fermi卫星发射后一些伽马暴的观测和理论研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号