首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
A crack model in antiplane shear configuration is shown representing creep processes interpreted in terms of 'viscous' deformation of a narrow plastic layer, characterized by inhomogeneous rheological properties, embedded within a homogeneous elastic medium. The evolution in time of slip and stress over the crack plane is studied through a truncated expansion in Chebyshev polynomials, and convergence is proved to be fast in the simple examples considered. Finite-stress solutions are found which are compatible with constitutive relations of elasto-plastic materials and furthermore these allow us to simulate creep propagation and stress transfer between locked and unlocked fault segments. This model provides a simple interpretation of the shallow depth of the seismogenic layer observed in several areas of the world and lends itself to modelling creep processes during either post-seismic rebound or pre-seismic stress buildup. Stress transfer is accomplished mostly by the slow extension of the creeping section. During a seismic cycle it is envisaged that different regimes dominate over deep, intermediate and shallow sections of faults: (i) slow pre-seismic stress build-up accompanied by creep and stress migration toward intermediate depths; (ii) brittle fracture over shallow and intermediate sections of faults; (iii) post-seismic rebound over intermediate and deep sections of faults. The present crack model, while providing finite-stress solutions, allows a better understanding of how stress may accommodate at different depths over a fault plane during a seismic cycle.  相似文献   

4.
5.
Neogene volcanic group (also called Linchang volcanic group) in Shandong is mainly distributed in the fault basins of Linqu and Changle area, the west block of the Middle belt of Tanlu fault belt. Its formation is related to the huge strike-slip activities of Tanlu fault belt and the shrinkage of Bohai Sea basin[1]. It is the famous protected area of Shanwang paleontologic fossil in the world, and also the famous mining area of sappire and diatomite in the country. It is of important impli…  相似文献   

6.
7.
8.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

9.
10.
11.
A sequence of peat beds was deposited in a small sag pond along the Cucamonga fault zone during late Holocene. The stratigraphic section of this deposit is described; several beds have been radiocarbon dated. Comparison of radiometric and stratigraphic chronologies allows reconstruction of the geomorphic history of the sag pond, which extends back 3000 years, and establishes evidence that the fault has been active within the very recent geologic past.  相似文献   

12.
13.
Several methods have been proposed to constrain the stress field from fault plane orientations and slip directions within a crustal volume characterized by brittle deformation. All the methods are based on the assumption that the stress field is uniform in the volume considered. If this hypothesis is not checked in advance, however, the methodology may lead to misleading conclusions. In this work, a procedure is defined to check stress-field uniformity by a statistical analysis of the available fault data. Since, in most cases, the statistical features of the uncertainties that affect such data are not well known, a distribution-free approach is proposed. It is based on a simple search algorithm, devoted to selecting stress configurations compatible with available data, combined with a bootstrap resampling approach. The test results are more conservative than the ones so far proposed in the literature. When the test allows stress heterogeneities to be safely excluded, approximate confidence intervals for the principal stress directions can be obtained; otherwise, the level of stress heterogeneity present in the volume under study can be assessed. An application of the proposed procedure to a sample of fault data deduced from seismological data is presented.  相似文献   

14.
A light detection and ranging (LiDAR) survey was conducted in a densely built-up area to generate a high-resolution digital elevation model (DEM) to look for active faults. The urban district of Matsumoto City in central Japan is located in a 3-km2 basin along the Itoigawa–Shizuoka Tectonic Line active fault system, one of Japanese onshore fault systems with the highest earthquake probability. A high-resolution DEM at a 0.5-m-grid interval was obtained after removing the effects of laser returns from buildings, clouds and vegetation. It revealed a continuous scarp, up to ~ 2 m in height. Borehole data and archaeological studies indicate the scarp was formed during the most recent faulting event associated with historical earthquakes. In addition, the fault scarp strongly supports that the urban district is in a pull-apart basin related to a fault step-over between two left-lateral strike-slip faults. Consequently, accurate interpretation of fault geometry is crucial to provide estimates of future surface deformation and to allow modeling of basin structure and strong ground motion. Thus, the LiDAR mapping survey in urban districts is effective for detailed active fault mapping in order to constrain basin structure and to forecast the exact location of surface rupturing associated with large earthquakes.  相似文献   

15.
16.
17.
18.
A Bayesian approach to estimating tectonic stress from seismological data   总被引:2,自引:0,他引:2  
Earthquakes are conspicuous manifestations of tectonic stress, but the non-linear relationships between the stresses acting on a fault plane, its frictional slip, and the ensuing seismic radiation are such that a single earthquake by itself provides little information about the ambient state of stress. Moreover, observational uncertainties and inherent ambiguities in the nodal planes of earthquake focal mechanisms preclude straightforward inferences about stress being drawn on the basis of individual focal mechanism observations. However, by assuming that each earthquake in a small volume of the crust represents a single, uniform state of stress, the combined constraints imposed on that stress by a suite of focal mechanism observations can be estimated. Here, we outline a probabilistic (Bayesian) technique for estimating tectonic stress directions from primary seismological observations. The Bayesian formulation combines a geologically motivated prior model of the state of stress with an observation model that implements the physical relationship between the stresses acting on a fault and the resultant seismological observation. We show our Bayesian formulation to be equivalent to a well-known analytical solution for a single, errorless focal mechanism observation. The new approach has the distinct advantage, however, of including (1) multiple earthquakes, (2) fault plane ambiguities, (3) observational errors and (4) any prior knowledge of the stress field. Our approach, while computationally demanding in some cases, is intended to yield reliable tectonic stress estimates that can be confidently compared with other tectonic parameters, such as seismic anisotropy and geodetic strain rate observations, and used to investigate spatial and temporal variations in stress associated with major faults and coseismic stress perturbations.  相似文献   

19.
基于GPS技术的活动断裂监测——以鲜水河、龙门山断裂为例   总被引:10,自引:0,他引:10  
GPS作为重要的技术手段,在地壳运动研究中得到广泛应用。以青藏高原东缘的鲜水河、龙门山两条重要活动断裂为例,根据GPS监测获得的欧亚框架的运动速度场,用刚性地块假设下的最小二乘法拟合方法,对其现今断裂活动性进行了研究。研究表明鲜水河断裂、龙门山断裂的整体运动速率分别为8.67±2.65mm/a、1.67±2.07mm/a;鲜水河断裂的甘孜-乾宁段、乾宁-康定段运动速率为8.88±2.74mm/a、9.73±2.30mm/a;龙门山断裂北段、中段、南段运动速率则分别为1.91±2.47mm/a、1.70±0.96mm/a、1.57±1.21mm/a。由此表明鲜水河断裂现今活动性大,而龙门山断裂的活动性相对不大。同时,断裂性质研究表明鲜水河断裂为左旋走滑挤压断裂;龙门山断裂性质为右旋挤压走滑断裂。  相似文献   

20.
A high-resolution digital elevation model (DEM, 1 ms spacing) derived from an airborne light detection and ranging (LiDAR) campaign was used in an attempt to characterize the structural and erosive elements of the geometry of the Pettino fault, a seismogenic normal fault in Central Apennines (Italy). Four 90- to 280 m-long fault scarp segments were selected and the surface between the base and the top of the scarps was analyzed through the statistical analysis of the following DEM-derived parameters: altitude, height of the fault scarp, and distance along strike, slope, and aspect. The results identify slopes of up to 40° in faults lower reaches interpreted as fresh faces, 34° up the faces. The Pettino fault maximum long-term slip rate (0.6–1.1 mm/yr) was estimated from the scarp heights, which are up to 12–19 m in the selected four segments, and the age (ca. 18 ka) of the last glacial erosional phase in the area. The combined analysis of the DEM-derived parameters allows us to (a) define aspects of three-dimensional scarp geometry, (b) decipher its geomorphological significance, and (c) estimate the long-term slip rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号