首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

2.
The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326–321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326–276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5–30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO_2(47.51–51.47 wt%), Al_2O_3(11.46–15.55 wt%), ΣFeO(8.27–9.61 wt%), MgO(13.01–15.18 wt%) and CaO(9.13–11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302–1351°C and pressures of 0.92–1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33–45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326–275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.  相似文献   

3.
The Tuva-Mongolia Massif is a composite Precambrian terrane incorporated into the Palaeozoic Sayany-Baikalian belt. Its Neoproterozoic amalgamation history involves early (800 Ma) and late Baikalian (600–550 Ma) orogenic phases. Two palaeogeographic elements are identified in the early Baikalian stage — the Gargan microcontinent and the Dunzhugur oceanic arc. They are represented by the Gargan Glyba (Block) and the island-arc ophiolites overthrusting it. The Gargan Glyba is a two-layer platform comprising an Early Precambrian crystalline basement and a Neoproterozoic passive-margin sedimentary cover. The upper part comprises olistostromes deposited in a foreland basin during the early Baikalian orogeny. The Dunzhugur arc ophiolite form klippen fringing the Gargan Glyba, and show a comprehensive oceanic-arc ophiolite succession. The Dunzhugur arc faced the microcontinent, as shown by the occurrence of forearc complexes. The arc–continent collision followed a pattern similar to Phanerozoic collisions. When the marginal basin lithosphere had been completely subducted, the microcontinental edge partially underthrust the arc, and the forearc ophiolite overrode it. Continued convergence caused a break of the arc lithosphere resulting in the uplift of the submerged microcontinental margin with the overthrust forearc ophiolites sliding into the foreland basin. Owing to the lithospheric break, a new subduction zone, inclined beneath the Gargan microcontinent, emerged. Initial melts of the newly-formed continental arc are represented by tonalites intruded into the Gargan microcontinent basement and its cover, and into the ophiolite nappe. The tonalite Rb–Sr mineral isochron age is 812±18 Ma, which is similar to a U–Pb zircon age of 785±11 Ma. A period of tonalite magmatism in Meso–Cenozoic orogenic belts is recognized some 1–10 m.y. after the collision. Accordingly, the Dunzhugur island arc–Gargan microcontinent collision is conventionally dated at around 800 Ma. It is highly probable that in the early Neoproterozoic, the Gargan continental block was part of the southern (in modern coordinates) margin of the Siberia craton. It is suggested that a chain of Precambrian massifs represents an elongate block separated from Siberia in the late Neoproterozoic. The Tuva-Mongolia Massif is situated in the northwest part of this chain. These events occurred on the NE Neoproterozoic margin of Rodinia, facing the World Ocean.  相似文献   

4.
Haijin Xu  Changqian Ma  Kai Ye   《Chemical Geology》2007,240(3-4):238-259
Two stages of early Cretaceous post-orogenic granitoids are recognized in the Dabie orogen, eastern China, which recorded processes of extensional collapse of the orogen. The early stage granitoids ( 132 Ma) are foliated hornblende quartz monzonites and porphyritic monzogranites. They are of high-K calc-alkaline series and metaluminous to weakly peraluminous, with high K2O and low MgO contents (Mg# values: 32.0–46.0), they contain high Sr, low Y and heavy rare earth elements (HREE), and have high Sr/Y and (La/Yb)N ratios, without clear negative Eu, Sr and Ti anomalies. The early stage deformed granitoids have adakitic geochemical compositions and are equilibrated with residues rich in garnet and poor in anorthite-rich plagioclase, and thus indicate the existence of an over-thickened (> 50 km) crustal root beneath the orogen at  132 Ma. The later stage granitoids ( 128 Ma) are undeformed fine-grained monzogranites, fine-grained K-feldspar granites and coarse-grained K-feldspar granite-porphyry. They belong to a peraluminous and high-K calc-alkaline to shoshonite series, and display a flat HREE pattern and have strong negative Eu, Sr and Ti anomalies, with low Sr/Y and (La/Yb)N ratios. The late stage granitoids are equilibrated with residues rich in anorthite-rich plagioclase, hornblende, ilmenite/titanite and poor in garnet, indicating that the crust of the Dabie orogen became thinner (< 35 km) at  128 Ma. SHRIMP zircon U–Pb ages and changing compositional trends for these two stages of granitoids indicate that the over-thickened crust formed by the Triassic continental subduction/collision under the Dabie orogen remained until the early Cretaceous, and collapsed quickly in a few million years during the early Cretaceous.  相似文献   

5.
While recycling of subducted oceanic crust is widely proposed to be associated with oceanic island, island arc, and subduction-related adakite magmatism, it is less clear whether recycling of subducted continental crust takes place in continental collision belts. A combined study of zircon U–Pb dating, major and minor element geochemistry, and O isotopes in Early Cretaceous post-collisional granitoids from the Dabie orogen in China demonstrates that they may have been generated by partial melting of subducted continental crust. The post-collisional granitoids from the Dabie orogen comprise hornblende-bearing intermediate rocks and hornblende-free granitic rocks. These granitoids are characterized by fractionated REE patterns with low HREE contents and negative HFSE anomalies (Nb, Ta and Ti). Although zircon U–Pb dating gives consistent ages of 120 to 130 Ma for magma crystallization, occurrence of inherited cores is identified by CL imaging and SHRIMP U–Pb dating; some zircon grains yield ages of 739 to 749 Ma and 214 to 249 Ma, in agreement with Neoproterozoic protolith ages of UHP metaigneous rocks and a Triassic tectono-metamorphic event in the Dabie–Sulu orogenic belt, respectively. The granitoids have relatively homogeneous zircon δ18O values from 4.14‰ to 6.11‰ with an average of 5.10‰ ± 0.42‰ (n = 28) similar to normal mantle zircon. Systematically low zircon δ18O values for most of the coeval mafic–ultramafic rocks and intruded country rocks preclude an AFC process of mafic magma or mixing between mafic and felsic magma as potential mechanisms for the petrogenesis of the granitoids. Along with zircon U–Pb ages and element results, it is inferred that the granitic rocks were probably derived from partial melting of intermediate lower crust and the intermediate rocks were generated by amphibole-dehydration melting of mafic rocks in the thickened lower crust, coupled with fractional crystallization during magma emplacement. The post-collisional granitoids in the Dabie orogen are interpreted to originate from recycling of the subducted Yangtze continental crust that was thickened by the Triassic continent–continent collision. Partial melting of orogenic lithospheric keel is suggested to have generated the bimodal igneous rocks with the similar crustal heritage. Crustal thinning by post-collisional detachment postdated the onset of bimodal magmatism that was initiated by a thermal pulse related to mantle superwelling in Early Cretaceous.  相似文献   

6.
祁漫塔格造山带——青藏高原北部地壳演化窥探   总被引:2,自引:0,他引:2  
祁漫塔格是东昆仑造山带的一个分支,位于青藏高原中北部,夹持于柴达木盆地和库木库里盆地中间,向西被阿尔金走滑断裂错段。从元古代到早中生代,由于受到多期、多阶段大洋俯冲和关闭影响,导致不同地体间发生碰撞拼贴和大陆增生过程,并由此引发一系列的岩浆事件。祁漫塔格造山带内发育新元古代花岗岩(1000~820 Ma)是对Rodinia超大陆形成的响应。以阿达滩和白干湖逆冲断裂为界,划分为南、北祁漫塔格两地体。北祁漫塔格地体作为活动大陆边缘,发育大量的早古生代与俯冲有关的花岗岩和VA型蛇绿岩;南祁漫塔格地体最初为洋内俯冲形成的原始大洋岛弧,发育早古生代SSZ型蛇绿岩、岛弧拉斑玄武岩和钙碱性火山岩。随着持续俯冲,年轻岛弧伴伴随地壳加厚转变为成熟岛弧。南、北祁漫塔格地体间的碰撞(弧-陆碰撞)可能发生在晚志留世(422Ma),并持续到早泥盆世(398Ma)。在此期间(422~389Ma),南祁漫塔格地体内发育一系列同碰撞型花岗岩;北祁漫塔格地体内发育一系列的大洋岛弧花岗岩。南祁漫塔格作为外来地体,碰撞拼贴对于大陆边缘、大陆增生意义重大。之后,南、北祁漫塔格地体进入后碰撞环境并发育一系列板内花岗岩。此外,伸展导致造山带垮塌,发育中泥盆统磨拉石建造。碰撞使得海沟后退,海沟阻塞导致俯冲减弱甚至停止,因而产生了石炭-二叠纪(357~251 Ma)岩浆活动缺口。古特提斯祁漫塔格洋的最终关闭可能始于晚二叠世,使得库木库里微板块拼贴于大陆边缘;碰撞抬升导致缺失上二叠统-中三叠统地层。早中三叠世(251~237 Ma)由于碰撞,俯冲大洋板片回转,之后断离,软流圈地幔物质沿岩石圈地幔通道上涌,使得新生下地壳部分熔融;到了晚三叠世,大规模岩石圈地幔和下地壳物质拆沉,导致古老地壳物质发生熔融,形成了一系列后碰撞背景下的钙碱性和碱性花岗岩。  相似文献   

7.
The Scandinavian Caledonides represent a classical example of a deeply eroded Himalayan‐style orogen formed during Baltica–Laurentia continent collision. We propose that initial contact along continental‐margin promontories led to a drop in convergence rate, resulting in increased slab rollback along parts of the margin still undergoing oceanic subduction. Slab rollback caused extension of the overlying lithosphere with orogen‐wide emplacement of mafic layered intrusions, ophiolite formation and bimodal magmatism at 438–434 Ma, in what immediately thereafter became the upper plate (Laurentia) in the Scandian continent–continent collision. A compilation of magmatic ages provides evidence of long‐lived, Ordovician arc magmatism in units above the suture, which is essentially absent below the suture. This model provides a tight constraint on the timing of collision initiation, and provides a framework by which tectonic units comprising the Scandinavian Caledonides can be assigned a Baltican or more exotic heritage.  相似文献   

8.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   

9.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   


10.
中国陆壳演化、多块体拼合造山与特色成矿的关系   总被引:5,自引:10,他引:5  
矿产资源的种类、时空分布、形成演化与成岩作用和大地构造格局密切相关。中国地质构造复杂,成矿条件多样(发育裂谷成矿、碰撞成矿、地幔柱成矿、低温成矿等特色成矿系统),矿床类型比较齐全,如大宗矿产(铁、铝、铜、钾盐)短缺,小宗矿产中盛产稀土元素(REE)、钨、锡、钼矿。中国早前寒武纪矿床相对较少,燕山期成矿集中爆发。这种矿产资源分布格局与中国大陆地壳的性质与演化、多块体拼合造山格局之间的内在联系尚待深入揭示。本文基于对中国陆壳演化、陆块与造山带组成格局和多块体拼合造山的系统分析总结,试图阐明中国成矿特色与其内在联系,从陆壳形成与造山带演化的宏观视角来研究中国大陆成矿特色、成矿物质时空分布规律,其特色包括:(1)中国陆壳的地台区与造山带区质量比约3∶7(全球陆壳地台区占69.6%),太古界面积小且支离破碎,地壳固化时间晚且运动频繁强烈,因此难以形成巨型条带状铁建造(BIF)富铁矿床、太古代火山岩块状硫化物型(VMS)铜锌矿带和元古代内克拉通裂谷有关的扎伊尔-赞比亚巨型铜矿。(2)环绕中朝-塔里木和扬子板块的增生造山带由老到新依次形成,并镶接于古板块边缘,使中国大陆逐渐增生扩展,导致火山岩型、与岩浆岩类和沉积岩系有关的大型矿床空间上向板块边缘推移,时间上越来越新,地壳演化成矿作用和矿床类型越来越多样化。(3)中亚成矿域以古生代多陆块拼合造山、中新生代陆内造山与山盆体系构成独特的地质构造格局。既发育增生造山阶段的弧环境相关矿床(蛇绿岩型铬铁矿、斑岩铜矿、VMS),也发育与碰撞造山有关的矿床(造山型金矿、石棉、滑石、白云母)、地幔柱叠置造山带背景下的岩浆铜镍矿和后碰撞陆内岩石圈伸展相关的大陆环境矿床(斑岩钼矿、热液金矿、伟晶岩型稀有金属矿)。(4)青藏高原(特提斯成矿域)系特提斯洋长期增生演化、印度-欧亚大陆碰撞的产物。其成矿条件优越,具有多期成矿作用、多矿种和多类型的复合成矿系统特点。形成了蛇绿岩套型铬铁矿、密西西比河谷型(MVT)铅锌矿和独具特色的碰撞环境超大型斑岩铜钼矿。(5)我国东部环太平洋成矿域,伴随晚中生代克拉通性质的根本转变及岩石圈明显的减薄过程与破坏,在华北克拉通周缘发生大规模的岩浆活动和强烈的金、铜、钼和轻稀土等成矿作用。不同时期的造山带干涉叠加使得南岭地区盛产花岗岩有关的钨、锡、钼矿,具有叠加改造成矿、大器晚成的鲜明成矿特色。由于中国成矿特色与大陆地壳演化密切相关,中国的找矿勘探部署必须立足于中国大陆演化与多块体拼合造山的基本地质事实,方能取得好的勘查效果。中国大陆小陆块拼合造山成矿还存在诸多未解之谜,文末提出了当前成矿学面临的一系列科学问题,对于今后我国找矿战略选区具有借鉴意义。  相似文献   

11.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

12.
Ron   《Gondwana Research》2006,10(3-4):207-231
New age, petrochemical and structural data indicate that the Banda Terrane is a remnant of a Jurassic to Eocene arc–trench system that formed the eastern part of the Great Indonesian arc. The arc system rifted apart during Eocene to Miocene supra-subduction zone sea floor spreading, which dispersed ridges of Banda Terrane embedded in young oceanic crust as far south as Sumba and Timor. In Timor the Banda Terrane is well exposed as high-level thrust sheets that were detached from the edge of the Banda Sea upper plate and uplifted by collision with the passive margin of NW Australia. The thrust sheets contain a distinctive assemblage of medium grade metamorphic rocks overlain by Cretaceous to Miocene forearc basin deposits. New U/Pb age data presented here indicate igneous zircons are less than 162 Ma with a cluster of ages at 83 Ma and 35 Ma. 40Ar/39Ar plateau ages of various mineral phases from metamorphic units all cluster at between 32–38 Ma. These data yield a cooling curve that shows exhumation from around 550 °C to the surface between 36–28 Ma. After this time there is no evidence of metamorphism of the Banda Terrane, including its accretion to the edge of the Australian continental margin during the Pliocene. These data link the Banda Terrane to similar rocks and events documented throughout the eastern edge of the Sunda Shelf and the Banda Sea floor.  相似文献   

13.
Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U–Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay–Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous ( 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic ( 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva–Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay–Hentey basin. Integrating all the age results from this study, we suggest that the Hangay–Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.  相似文献   

14.
The Linzizong volcanic succession (~ 65–45 Ma) and the coeval batholiths (~ 60−40 Ma) of andesitic to rhyolitic composition represent a magmatic response to the India–Asia continental collision that began at ~ 70–65 Ma and ended at ~ 45–40 Ma with convergence continuing to present. These syncollisional felsic magmatic rocks are widely distributed along much of the > 1500 km long Gangdese Belt immediately north of the India–Asia suture (Yarlung–Zangbo) in southern Tibet. Our study of the Linzizong volcanic rocks from the Linzhou Basin (near Lhasa) suggests that syncollisional felsic magmatism may in fact account for much of the net contribution to continental crust growth. These volcanic rocks show a first-order temporal change from the andesitic lower Dianzhong Formation (64.4–60.6 Ma), to the dacitic middle Nianbo Formation (~ 54 Ma), and to the rhyolitic upper Pana Formation (48.7–43.9 Ma). The three formations show no systematic but overlapping Nd–Sr isotope variations. The isotopically depleted samples with εNd(t) > 0 indicate that their primary sources are of mantle origin. The best source candidate in the broad context of Tethyan ocean closing and India–Asia collision is the remaining part of the Tethyan ocean crust. This ocean crust melts when reaching its hydrous solidus during and soon after the collision in the amphibolite facies, producing andesitic melts parental to the Linzizong volcanic succession (and the coeval batholiths) with inherited mantle isotopic signatures. Ilmenite as a residual phase (plus the effect of residual amphibole) of amphibolite melting accounts for the depletion of Nb, Ta and Ti in the melt. The effect of ocean crust alteration plus involvement of mature crustal materials (e.g., recycled terrigeneous sediments) enhances the abundances of Ba, Rb, Th, U, K and Pb in the melt, thus giving the rocks an “arc-like” geochemical signature. Residual amphibole that possesses super-chondritic Nb/Ta ratio explains the sub-chondritic Nb/Ta ratio in the melt; residual plagioclase explains the slightly depleted, not enriched, Sr (and Eu) in the melt, typical of continental crust. These observations and reasoning plus the remarkable compositional similarity between the andesitic lower Dianzhong Formation and the model bulk continental crust corroborates our proposal that continental collision zones may be sites of net crustal growth (juvenile crust) through process of syncollisional felsic magmatism. While these interpretations are reasonable in terms of straightforward petrology, geochemistry and tectonics, they require further testing.  相似文献   

15.
秦岭商-丹缝合带是分隔北秦岭早古生代造山带和南秦岭晚古生代造山带的地质界线,其中的丹凤蛇绿岩被认为代表了秦岭地区早古生代的洋壳残片。迄今,前人已经提出多种模式来解释丹凤蛇绿岩成因和构造背景(如:岛弧、洋岛和成熟的大洋等)。然而,这些单一的构造演化模式却很难解释两个基本事实:(1)不同类型镁铁质岩(如N-MORB、E-MORB和IAT等)的穿时性分布;(2)几乎所有的早古生代镁铁质岩都显示出多种构造环境的叠加。对陕西太白鹦鸽嘴地区一条具有较完整层序的蛇绿岩剖面研究发现,剖面中存在HTI型(TiO2:1.21%~1.56%)和LTI(TiO2:0.09%~0.35%)两种类型的镁铁质岩(包括玄武岩和辉长岩),HTI型镁铁质岩具有LREE亏损,没有Nb、Ta负异常等的E-MORB特征;LTI具有LREE富集,Nb、Ta负异常的IAT特征。地球化学显示二者的源区均为北秦岭岩石圈地幔楔。本文获得鹦哥嘴蛇绿岩两个LTI型辉长岩锆石U-Pb年龄分别为523.8±1.3Ma和474.3±1.4Ma。认为秦岭早古生代蛇绿岩应是SSZ环境下多阶段演化的结果:第一阶段:约524Ma,秦岭洋盆向北俯冲开始。俯冲板片的脱水作用使熔融温度降低,形成的流体交代地幔楔,在北秦岭南缘产生了一个不成熟的岛弧;第二阶段:先存岛弧裂开阶段,约524~474Ma。秦岭洋壳的持续俯冲,在先形成的岛弧上拉张出了弧间盆地,形成了主要由轻稀土亏损、高Ti拉斑玄武岩和辉长岩组成的E-MORB型岩石组合;第三阶段:弧前盆地闭合阶段,474Ma之后。在这个阶段新生的弧间盆地闭合,俯冲洋壳携带的深海沉积物与北秦岭岩石圈地幔楔相互作用形成了北秦岭李子园的玻安岩。秦岭早古生代蛇绿岩的多阶段成因是典型特提斯构造域演化特征在秦岭地区的重现。  相似文献   

16.
Geochronological, geochemical, and structural studies of magmatic and metamorphic complexes within the Kyrgyz North Tianshan (NTS) revealed an extensive area of early Palaeozoic magmatism with an age range of 540–475 Ma. During the first episode at 540–510 Ma, magmatism likely occurred in an intraplate setting within the NTS microcontinent and in an oceanic arc setting within the Kyrgyz-Terskey zone in the south. During the second episode at 500–475 Ma, the entire NTS represented an arc system. These two phases of magmatism were separated by an episode of accretionary tectonics of uncertain nature, which led to obduction of ophiolites from the Kyrgyz-Terskey zone onto the microcontinent. The occurrence of zircon xenocrysts and predominantly negative whole-rock ɛNd(t) values and ɛHf(t) values of magmatic zircons suggest a continental setting and melting of Precambrian continental sources with minor contributions of Palaeozoic juvenile melts in the generation of the magmatic rocks. The late Cambrian to Early Ordovician 500–475 Ma arc evolved mainly on Mesoproterozoic continental crust in the north and partly on oceanic crust in the south. Arc magmatism was accompanied by spreading in a back-arc basin in the south, where supra-subduction ophiolitic gabbros yielded ages of 496 to 479 Ma. The relative position of the arc and active back-arc basin implies that the subduction zone was located north of the arc, dipping to the south. Variably intense metamorphism and deformation in the NTS reflect an Early Ordovician orogenic event at 480–475 Ma, resulting from closure of the Djalair-Naiman ophiolite trough and collision of the Djel'tau microcontinent with the northern margin of NTS. Comparison of geological patterns and episodes of arc magmatism in the NTS and Chinese Central Tianshan indicate that these crustal units constituted a single early Palaeozoic arc and were separated from the Tarim Craton by an oceanic basin since the Neoproterozoic.  相似文献   

17.
The Sveconorwegian orogeny in SW Baltica comprised a series of geographically and tectonically discrete events between 1140 and 920 Ma. Thrusting and high-grade metamorphism at 1140–1080 Ma in central parts of the orogen were followed by arc magmatism and ultra-high-temperature metamorphism at 1060–920 Ma in the westernmost part of the orogen. In the eastern part of the orogen, crustal thickening and high-pressure metamorphism took place at 1050 in one terrane and at 980 Ma in another. These discrete tectonothermal events are incompatible with an evolution resulting from collision with another major, continental landmass, and better explained as accretion and re-amalgamation of fragmented and attenuated crustal blocks of the SW Baltica margin behind an evolving continental-margin arc. In contrast, the coeval, along-strike Grenvillian orogeny is typically ascribed to long-lived collision with Amazonia. Here we argue that coeval, but tectonically different events in the Sveconorwegian and Grenville orogens may be linked through the behavior of the Amazonia plate. Subduction of Amazonian oceanic crust, and consequent slab pull, beneath the Sveconorwegian may have driven long-lived collision in the Grenville. Conversely, the development of a major orogenic plateau in the Grenville may have slowed convergence, thereby affecting the rate of oceanic subduction and thus orogenic evolution in the Sveconorwegian. Convergence ceased in the Grenville at ca. 980 Ma, in contrast to the Sveconorwegian where convergence continued until ca. 920 Ma, and must have been accommodated elsewhere along the Grenville–Amazonia segment of the margin, for example in the Goiás Magmatic Arc which had been established along the eastern Amazonian margin by 930 Ma. Our model shows how contrasting but coeval orogenic behavior can be linked through geodynamic coupling along and across tectonic plates.  相似文献   

18.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

19.
New geological, geochronological and isotopic data reveal a previously unknown arc system that evolved south of the Kyrgyz Middle Tianshan (MTS) microcontinent during the Middle and Late Ordovician, 467–444 Ma ago. The two fragments of this magmatic arc are located within the Bozbutau Mountains and the northern Atbashi Range, and a marginal part of the arc, with mixed volcanic and sedimentary rocks, extends north to the Semizsai metamorphic unit of the southern Chatkal Range. A continental basement of the arc, indicated by predominantly felsic volcanic rocks in Bozbutau and Atbashi, is supported by whole-rock Nd- and Hf-in-zircon isotopic data. εNd(t) of + 0.9 to − 2.6 and εHf(t) of + 1.8 to − 6.0 imply melting of Neo- to Mesoproterozoic continental sources with Nd model ages of ca. 0.9 to 1.2 Ga and Hf crustal model ages of ca. 1.2 to 1.7 Ga. In the north, the arc was separated from the MTS microcontinent by an oceanic back-arc basin, represented by the Karaterek ophiolite belt. Our inference of a long-lived Early Palaeozoic arc in the southwestern MTS suggests an oceanic domain between the MTS microcontinent and the Tarim craton in the Middle Ordovician.The time of arc-continent collision is constrained as Late Ordovician at ca. 450 Ma, based on cessation of sedimentation on the MTS microcontinent, the age of an angular unconformity within the Karaterek suture zone, and the age of syncollisional metamorphism and magmatism in the Kassan Metamorphic Complex of the southern Chatkal Range. High-grade amphibolite-facies metamorphism and associated crustal melting in the Kassan Metamorphic Complex restricts the main tectonic activity in the collisional belt to ca. 450 Ma. This interpretation is based on the age of a synkinematic amphibolite-facies granite, intruded into paragneiss during peak metamorphism. A second episode of greenschist- to kyanite–staurolite-facies metamorphism is dated between 450 and 420 Ma, based on the ages of granitoid rocks, subsequently affected or not affected by this metamorphism. The latest episode is recorded by greenschist-facies metamorphism in Silurian sandstones and granodiorites and by retrogression of the older, higher-grade rocks. This may have occurred at the Silurian to Devonian transition and reflects reorganization of a Middle Palaeozoic convergent margin.Late Ordovician collision was followed by initiation of a new continental arc in the southern MTS. This arc was active in the Early Silurian, latest Silurian to Middle Devonian, and Late Carboniferous, whereas during the Givetian through Mississippian (ca. 385–325 Ma) this area was a passive continental margin. These arcs, previously well constrained west of the Talas-Ferghana Fault, continued eastwards into the Naryn and Atbashi areas and probably extended into the Chinese Central Tianshan. The disappearance of a major crustal block with transitional facies on the continental margin and too short a distance between the arc and accretionary complex suggest that plate convergence in the Atbashi sector of the MTS was accompanied by subduction erosion in the Devonian or Early Pennsylvanian. This led to a minimum of 50–70 km of crustal loss and removal of the Ordovician arc as well as the Silurian and Devonian forearcs in the areas east of the Talas-Ferghana Fault.  相似文献   

20.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary collages in the world, and records a prolonged sequence of subduction‐accretion and collision processes. The Tarim Craton is located at the southernmost margin of the CAOB. In this study, the discovery of early Palaeozoic high‐pressure (HP) granulites from the Dunhuang block in the northeastern Tarim Craton is reported, and these rocks are characterized through detailed petrological and geochronological studies. The peak mineral assemblage of the HP mafic granulite is garnet + clinopyroxene + plagioclase + quartz + rutile, which is overprinted by amphibolite facies retrograde metamorphic assemblages. The calculated P–T conditions of the peak metamorphism are ~1.4–1.7 GPa and ~800 °C. The retrograde P–T conditions are ~0.7 GPa and ~700 °C. The metamorphic zircon grains from the HP mafic granulite show homogeneous CL‐images, low Th/U ratios and flat HREE patterns and yield a weighted mean 206Pb/238U age of 444 ± 5 Ma. The metamorphic zircon grains from the associated kyanite‐bearing garnet gneiss and garnet‐mica schist show a similar 206Pb/238U age of 429 ± 3 and 435 ± 4 Ma, respectively. The c. 440–430 Ma age is interpreted to mark the timing of HP granulite facies metamorphism in the Dunhuang block. The results from this study suggest that the Dunhuang block experienced continental subduction prior to the early Palaeozoic collisional orogeny between the northeastern Tarim Craton and the southern CAOB, and the Dunhuang area could be considered as the southward extension of the CAOB. It is suggested that the continental collision in the eastern part involving the Dunhuang block of the southern CAOB may have occurred c. 120 Ma earlier than in the western part involving the Tianshan orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号