首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compositional variation of clinopyroxene and the partitioning of major elements between clinopyroxene and melt are estimated as a function of the cooling rate. Clinopyroxenes were crystallized under variable cooling regimes (15, 9.4, 3, 2.1, and 0.5 °C/min from 1250 down to 1000 °C) and at isothermal conditions of 1000 °C from a basaltic composition at a pressure of 500 MPa under anhydrous and hydrous (H2O = 1.3 wt.%) conditions. The clinopyroxene chemistry shows that, as the cooling rate increases, crystals are progressively depleted in Ca, Mg, Fe2+ and Si and enriched in Na, Fe3+, Al (mainly AlIV), and Ti. Di and Hd versus CaTs and CaFeTs form a continuous binary solid solution characterized by higher amounts of tschermakitic components with increasing cooling rate. Two parameters (DH = Di + Hd and TE = CaTs + CaFeTs + En) are calculated to describe the effect of cooling rate on the clinopyroxene composition. The variation of DH/TE with increasing cooling rate evidences the kinetic process induced by rapid cooling in basic rocks under hydrous and anhydrous conditions.Dynamic crystallization conditions affect the partitioning of major elements between clinopyroxene and melt; with increasing cooling rate, the value of crystal–melt partition coefficient departs from that obtained at the isothermal condition. However, in spite of these variations, the values of cpx–meltKdFe–Mg remain almost constant. Therefore, the Fe2–Mg exchange between clinopyroxene and melt is not suitable to prove the (dis)equilibrium conditions in basaltic cooling magmas, giving rise to possible mismatches in the application of thermobarometers. The results of our study are consistent with that observed at the margin of dikes or in the exterior portions of lavas, where the cooling rate is maximized and disequilibrium compositions of clinopyroxene have been found.  相似文献   

2.
The Han-Xing region is located in the south Taihang Mountains (TM) in the central part of the North China Craton, and is an important iron producing area. The iron deposits in this region are of skarn type, related to an Early Cretaceous high-Mg diorite complex, including gabbro diorite, hornblende diorite, diorite, diorite porphyrite, and monzonite. In this study we report the detailed mineral chemistry of the high-Mg diorites and skarn rocks. The olivine in the gabbro diorite shows chemical composition similar to that in mantle peridotite xenoliths. Clinopyroxene in the gabbro diorite is dominantly augite, with only minor diopside, whereas the clinopyroxenes in the diorite and monzonite are diopside. Amphiboles in the high-Mg diorites show compositional range from magnesiohornblende to magnesiohastingsite, with minor pargasite and tschermakite. Most plagioclase in the high-Mg diorite is andesine and oligoclase. The magnesio-biotite in gabbro diorites shows chemical characteristics of re-equilibrated primary biotites and those in calc-alkaline rocks. In the diorite and diorite porphyrite, plagioclase shows complex chemical zoning. Clinopyroxene and garnet in skarn rocks show varying FeO contents, the former containing low FeO (< 9 wt.%) and occurring as the major skarn mineral in large-scale iron deposits, and the latter within small-scale iron deposits with high FeO (mostly > 25 wt.%) content. We computed the pressure, temperature, oxygen fugacity and water contents based on the mineral chemistry of amphibole and biotite. Based on the results, the magma crystallization can be divided into two stages, one within the deep magma chamber, forming clinopyroxene, amphibole and plagioclase phenocrysts; the other after emplacement, forming the rim of phenocrysts and matrix minerals. The magma during the early stage shows high temperature (~ 900 °C–950 °C), pressure (~ 300 MPa–500 MPa), relatively high logfO2 (NNO–NNO + 2), and H2O content in melt (4%–8%). During the late stage, the magma temperature dropped to about 750 °C, and pressure came down to less than 100 MPa, with the logfO2 rising to NNO + 1–NNO + 2.The zoning of amphibole and plagioclase records the process of magma mixing and crystallization, with injection of mafic magma into the felsic magma chamber. The relatively high logfO2 and H2O content inhibited partitioning of iron into mafic minerals and favored concentration of Fe in the melt. Iron ore precipitation occurred when the magma was emplaced at shallow level, and was principally controlled by the chemical composition of carbonate wall rocks. The high logfO2, Fe3 + rich ore-forming fluid generated andradite and clinopyroxene when it reacted with limestone and dolomitic limestone respectively.  相似文献   

3.
Generally, arc-related or subduction-related mafic magmas are formed during or slightly postdate subduction, and characterized by depletion in high field strength elements (HFSEs) relative to the large ion lithophile elements (LILEs) and light rare-earth elements (LREEs). Combining with mineral chemistry and Sr–Nd isotopes, these geochemical characteristics were usually used to define an arc setting, especially for some ancient arcs that had been strongly modified by later tectonic activities. However, we report an exceptional case from the northern part of the Triassic Yidun Arc Belt, eastern Tibetan Plateau. The Ganluogou gabbro (∼152 Ma) occurs as several intrusive bodies. Its mineral assemblage is olivine (chrysolite), plagioclase (anorthite), clinopyroxene (diopside), amphibole (edenite and pargasite) and phlogopite. Whole rock geochemistry shows low SiO2 (42.87–46.99 wt.%), total rear earth elements (ΣREE = 22.8–28.4 ppm), Na2O + K2O (0.92–1.34 wt.%), and high Al2O3, MgO and FeO contents. It has small variations of initial 87Sr/86Sr ((87Sr/86Sr)i = 0.7053–0.7055) and εNd(t) values (−4.8 to −1.8). All the samples exhibit enrichment in LILEs including Th and U, but strongly depleted in HFSEs, including Nb, Ta, Zr and Hf. For the mineral chemistry, there are two type amphiboles. Amp(I) show higher V, Sc, Cr, Sr, Nb and Zr contents, but lower Th and U contents than those of Amp(II). Their REE patterns range from convex shape without Eu anomaly to LREE-enriched pattern with weak positive Eu anomaly. We suggest that Amp(I) was crystallized from a liquid that was mainly buffered by olivine, clinopyroxene and plagioclase, while Amp(II) crystallized from later melt that was mainly buffered by olivine. Based on clinopyroxene chemistry, compositions of coexisting olivine and plagioclase, and whole rock Sr–Nd isotopes, the parental magma of the Ganluogou gabbro is interpreted as a tholeiitic arc-affinity magma, which might be derived from an N-MORB mantle that had been metasomatised by slab-derived melts in the late Triassic (237–206 Ma). Thus, the Ganluogou gabbro provides an example that magmas exhibiting arc-affinity could in fact be formed in a post-orogenic extensional setting.  相似文献   

4.
In this study, we investigated Fe and Li isotope fractionation between mineral separates of olivine pheno- and xenocrysts (including one clinopyroxyene phenocryst) and their basaltic hosts. Samples were collected from the Canary Islands (Teneriffa, La Palma) and some German volcanic regions (Vogelsberg, Westerwald and Hegau). All investigated bulk samples fall in a tight range of Li and Fe isotope compositions (δ56Fewr = 0.06–0.17‰ and δ7Lima = 2.5–5.2‰, assuming δ7Li of the olivine-free matrix is virtually identical to that of the bulk sample for mass balance reasons). In contrast, olivine phenocrysts display highly variable, but generally light Fe and mostly light Li isotope compositions compared to their respective olivine-free basaltic matrix, which was considered to represent the melt (with δ56Feol = ? 0.24 to 0.14‰ and δ7Liol = ? 10.5 to + 6.5‰, respectively). Single olivine crystals from one sample display even a larger range of δ56Feol between ? 0.7 and + 0.1‰. One single clinopyroxene phenocryst displays the lightest Li isotope composition (δ7Licpx = ? 17.7‰), but no Fe isotope fractionation relative to melt. The olivine phenocrysts show variable Mg# and Ni (correlated in most cases) that range between 0.89 and 0.74 and between 300 and 3000 μg/g, respectively. These olivines likely grew by fractional crystallization in an evolving magma. One sample from the Vogelsberg volcano contained olivine xenocrysts (Mg# > 0.89 and Ni > 3000 μg/g), in addition to olivine phenocrysts. This sample displays the highest Li- and the second highest Fe-isotope fractionation between olivine and melt (Δ7Liol-melt = ? 13; Δ56Feol-melt = ? 0.29).Our data, i.e. the variable olivine- at constant whole rock and matrix isotope compositions, strongly indicate disequilibrium, i.e. kinetic Fe and Li isotope fractionation between olivine and melt (for Li also between cpx and melt) during fractional crystallization. Δ7Liol-melt is correlated with the Li partitioning between olivine and melt (i.e. with Liol/Limelt), indicating Li isotope fractionation due to preferential (faster) diffusion of 6Li into olivine during fractional crystallization. Olivine with low Δ7Liol-melt, also have low Δ56Feol-melt, indicating that Fe isotope fractionation is also driven by diffusion of isotopically light Fe into olivine, potentially, as Fe–Mg inter-diffusion. The lowest Δ56Feol-melt (? 0.40) was observed in a sample from Westerwald (Germany) with abundant magnetite, indicating relatively oxidizing conditions during magma differentiation. This may have enhanced equilibrium Fe isotope fractionation between olivine and melt or fine dispersed magnetite in the basalt matrix may have shifted its Fe isotope composition towards higher δ56Fe. The decoupling of Li- and Fe isotope fractionation in cpx is likely due to faster diffusion of Li relative to Fe in cpx, implying that the large investigated cpx phenocryst resided in the magma for only a short period of time which was sufficient for Li- but not for Fe diffusion. The absence of any equilibrium Fe isotope fractionation between the investigated cpx phenocryst and its basaltic host may be related to the similar Fe3 +/Fe2 + of cpx and melt. In contrast to cpx, the generally light Fe isotope composition of all investigated olivine separates implies the existence of equilibrium- (in addition to diffusion-driven) isotope fractionation between olivine and melt, on the order of 0.1‰.  相似文献   

5.
An experimental study on the origin of ferric and ferrous carbonate-silicate melts, which can be considered as the potential metasomatic oxidizing agents and diamond forming media, was performed in the (Ca,Mg)CO3-SiO2-Al2O3-(Mg,Fe)(Cr,Fe,Ti)O3 system, at 6.3 GPa and 1350–1650 °C. At 1350–1450 °C and ?O2 of FMQ + 2 log units, carbonate–silicate melt, coexisting with Fe3 +-bearing ilmenite, pyrope-almandine and rutile, contained up to 13 wt.% of Fe2O3. An increase in the degree of partial melting was accompanied by decarbonation and melt enrichment with CO2, up to 21 wt.%. At 1550–1650 °C excess CO2 segregated as a separate fluid phase. The restricted solubility of CO2 in the melt indicated that investigated system did not achieve the second critical point at 6.3 GPa. At 1350–1450 °C and ?O2 close to CCO buffer, Fe2 +-bearing carbonate–silicate melt was formed in association with pyrope-almandine and Fe3 +-bearing rutile. It was experimentally shown that CO2-rich ferrous carbonate-silicate melt can be an effective waterless medium for the diamond crystallization. It provides relatively high diamond growth rates (3–5 μm/h) at P,T-conditions, corresponding to the formation of most natural diamonds.  相似文献   

6.
《Gondwana Research》2016,29(4):1391-1414
Experiments on the origin of the Udachnaya-East kimberlite (UEK) have been performed using a Kawai-type multianvil apparatus at 3–6.5 GPa and 900–1500 °C. The studied composition represents exceptionally fresh Group-I kimberlite containing (wt.%): SiO2 = 25.9, TiO2 = 1.8, Al2O3 = 2.8, FeO = 9.0, MgO = 30.1, CaO = 12.7, Na2O = 3.4, K2O = 1.3, P2O5 = 1.0, Cl = 0.9, CO2 = 9.9, and H2O = 0.5. The super-solidus assemblage consists of melt, olivine (Ol), Ca-rich (26.0–30.2 wt.% CaO) garnet (Gt), Al-spinel (Sp), perovskite (Pv), a CaCO3 phase (calcite or aragonite), and apatite. The low pressure assemblage (3–4 GPa) also includes clinopyroxene. The apparent solidus was established between 900 and 1000 °C at 6.5 GPa. At 6.5 GPa and 900 °C Na–Ca carbonate with molar ratio of (Na + K)/Ca  0.44 was observed. The UEK did not achieve complete melting even at 1500 °C and 6.5 GPa, due to excess xenogenic Ol in the starting material. In the studied PT range, the melt has a Ca-carbonatite composition (Ca# = molar Ca/(Ca + Mg) ratio = 0.62–0.84) with high alkali and Cl contents (7.3–11.4 wt.% Na2O, 2.8–6.7 wt.% K2O, 1.6–3.4 wt.% Cl). The K, Na and Cl contents and Ca# decrease with temperature. It is argued that the primary kimberlite melt at depths > 200 km was an essentially carbonatitic (< 5 wt.% SiO2), but evolved toward a carbonate–silicate composition (up to 15–20 wt.% SiO2) during ascent. The absence of orthopyroxene among the run products indicates that xenogenic orthopyroxene was preferentially dissolved into the kimberlite melt. The obtained subliquidus phase assemblage (Ol + Sp + Pv + Ca-rich Gt) at PT conditions of the UEK source region, i.e. where melt was in the last equilibrium with source rock before magma ascent, differs from the Opx-bearing peridotitic mineral assemblage of the UEK source region. This difference can be ascribed to the loss of substantial amounts of CO2 from the kimberlite magma at shallow depths, as indicated by both petrological and experimental data. Our study implies that alkali-carbonatite melt would be a liquid phase within mantle plumes generated at the core–mantle boundary or shallower levels of the mantle, enhancing the ascent velocity of the plumes. We conclude that the long-term activity of a rising hot mantle plume and associated carbonatite melt (i.e. kimberlite melt) causes thermo-mechanical erosion of the subcontinental lithosphere mantle (SCLM) roots and creates hot and deformed metasomatic regions in the lower parts of the SCLM, which corresponds to depths constrained by PT estimates of sheared Gt-peridotite xenoliths. The sheared Gt-peridotites undoubtedly represent samples of these regions.  相似文献   

7.
Olivine, clinopyroxene and orthopyroxene in variably metasomatised peridotite xenoliths from three lithospheric mantle sections beneath the East African Rift in Tanzania (Lashaine, Olmani, Labait) show systematic differences in their average Li concentrations (2.4 ppm, 2.0 ppm and 1.5 ppm, respectively) and intermineral isotopic fractionations, with olivine being heaviest (δ7Li = + 2.3 to + 13.9‰, average + 5.0‰), followed by orthopyroxene (? 4.1 to + 6.5‰, average + 0.8‰) and clinopyroxene (? 6.7 to + 4.1‰, average ? 1.6‰). These features are ascribed to the effects of kinetic Li isotope fractionation combined with different Li diffusivities in mantle minerals.Two main mechanisms likely generate diffusion-driven kinetic Li isotope fractionation in mantle xenoliths (1) Li diffusion from grain boundary melt into minerals during recent metasomatism or entrainment in the host magma and (2) subsolidus intermineral Li-redistribution. The latter can produce both isotopically light (Li-addition) and heavy (Li-loss) minerals and may occur in response to changes in pressure and/or temperature.Modelling shows that non-mantle-like δ7Li in clinopyroxene (< + 2‰), combined with apparent equilibrium olivine-clinopyroxene elemental partitioning in most peridotite xenoliths from all three Tanzanian localities probably reflects incipient Li addition during interaction with the host magma. Low δ7Li (< ? 3‰), combined with high Li concentrations (> 3 ppm) in some clinopyroxene may require very recent (minutes) Li ingress from a Li-rich melt (100s of ppm) having mantle-like δ7Li. This might happen during late fragmentation of some mantle xenoliths caused by a volatile- (and Li-) rich component exsolved from the host basalt. In contrast, high Li concentrations (> 2 ppm) and δ7Li (> 4‰) in olivine from many Labait and Olmani samples are attributed to an older, pre-entrainment enrichment event during which isotopic equilibrium was attained and whose signature was not corrupted during xenolith entrainment. Low Li concentrations and mantle-like isotopic composition of olivine from most Lashaine xenoliths indicate limited metasomatic Li addition.Thus, Li concentrations and isotope compositions of mantle peridotites worldwide may reflect two processes, with olivine mainly preserving a signature of depletion in refractory samples (low Li contents and δ7Li) or of older (precursory) melt addition in metasomatised samples (high Li contents and δ7Li), while non mantle-like, low δ7Li in almost all clinopyroxene can be due to Li ingress during transport in the host magma and/or slow cooling, if the samples were erupted in lavas. In Tanzania, the peridotites experienced rift-related heating prior to entrainment and were quenched upon eruption, so Li ingress is the most likely process responsible for the isotopically light clinopyroxene here.  相似文献   

8.
The paper is concerned with study of melt inclusions in minerals of ijolite xenoliths at Oldoinyo Lengai Volcano. Melt inclusions with different phase compositions occur in forsterite macrocrysts and in diopside, nepheline, fluorapatite, Ti-andradite, and Ti-magnetite crystals. Nepheline contains primary melt inclusions (silicate glass + gas-carbonate globule ± submicron globules ± sulfide globule ± daughter/trapped phases, represented by diopside, fluorapatite, Ti-andradite, and alumoakermanite). The gas-carbonate globule consists of a gas bubble surrounded by a fine-grained aggregate of Na-Ca-carbonates (nyerereite and gregoryite). Fluorapatite contains primary carbonate-rich melt inclusions in the core, which consist of nyerereite, gregoryite, thenardite, witherite, fluorite, villiaumite, and other phases. Their mineral composition is similar to natrocarbonatites. Primary melt inclusions (glass + gas bubble ± daughter phases) are rare in diopside and Ti-andradite. Diopside and forsterite have trails of secondary carbonate-rich inclusions. Besides the above minerals, these inclusions contain halite, sylvite, neighborite, Na-Ca-phosphate, alkali sulfates, and other rare phases. In addition, diopside contains sulfide inclusions (pyrrhotite ± chalcopy- rite ± djerfisherite ± galena ± pentlandite). The chemical compositions of silicate glasses in the melt inclusions vary widely. The glasses are characterized by high Na, K, and Fe contents and low Al contents. They have high total alkali contents (16–23 wt.% Na2O + K2O) and peralkalinity index [(Na + K)/Al] ranging from 1.1 to 7.6. The carbonate-rich inclusions in the ijolite minerals are enriched in Na, P, S, and Cl. The data obtained indicate that the parental melt in the intermediate chamber was heterogeneous and contained silicate, natrocarbonate, and sulfide components during the ijolite crystallization. According to heating experiments with melt inclusions, silicate-carbonate liquid immiscibility occurred at temperature over 580 °C.  相似文献   

9.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

10.
The ultramafic member of the Variscan Ślęża Ophiolite (SW Poland) consists of heavily serpentinised, refractory harzburgites. Those located down to 1.5 km below paleo-Moho contain scarce grains or aggregates of olivine, clinopyroxene and spinel. Non-serpentine phases occur in various assemblages: M1—olivine (Fo 90.2–91.0%, NiO 0.38–0.47 wt.%) and rounded or amaeboidal aluminous chromite, rimmed by Al poor chromite and magnetite; M2—olivine (Fo 90.5–91.5, NiO 0.32–0.44 wt.%), olivine with magnetite inclusions (Fo 87.1–92.5, NiO 0.01–0.68 wt.%), rounded, cleavaged clinopyroxene I (Mg# 91.1–93.2, Al2O3 3.00–4.00 wt.%, Cr2O3 1.00–1.40 wt.%) and elongated clinopyroxene II and clinopyroxene from symplectites with magnetite (Mg# = 92.2–94.1, Al2O3 2.20–3.20 wt.% and Cr2O3 0.80–1.20 wt.%). Clinopyroxene is depleted in REEs relative to chondrite. The M3 assemblage consists of intergrown olivine (Fo 90.8–92.7, NiO 0.20–0.38 wt.%) and clinopyroxene (Mg# = 96.0–98.1, Al2O3 0.00–1.00 wt.% and Cr2O3 0.20–0.60 wt.%).The M1 assemblage contains chromite which records greenschist-facies metamorphism. Textural relationships and chemical composition of clinopyroxene occurring in the M2 assemblage are similar to those formed in oceanic spreading centres by LREE depleted basaltic melt percolation. Olivine occurring in M1 assemblage and part of that from M2 have composition typical of residual olivine from the abyssal harzburgites and of olivine formed in those rocks by melt percolation. The olivine with magnetite inclusions (M2 assemblage) and that from M3 record later deserpentinization event, which supposedly produced also M3 clinopyroxene. The non-serpentine phases from the Ślęża ophiolite mantle member, albeit very poorly preserved, document depleted basaltic melt percolation in the Variscan oceanic spreading centre.  相似文献   

11.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

12.
In this study we experimentally determine phlogopite/melt partition coefficients of Ra and other trace elements in a lamproitic system. This work was achieved using an analytical technique (LA-ICP-MS) with low detection limits (~ 0.01 fg) permitting the measurement of the very low Ra concentrations feasible in experiments (~ 1 ppb). DRaphlogopite/melt was determined to 2.28 ± 0.44 and 2.84 ± 0.47 in two experiments, the ratio DRa/DBa is around 1.6. The compatibility of Ra in phlogopite results from an ionic radius being close to the apex of the lattice strain parabola for earth alkalis in the large XII-coordinated interlayer site of phlogopite. A re-evaluation of DRa and DRa/DBa for magmatic minerals containing appreciable Ra, yields DRamineral/melt ranging from ~ 2.6 for phlogopite down to 2–3 ? 10? 5 for pyroxenes, and DRa/DBamineral/melt from ~ 4 for leucite to 2 ? 10? 2 for orthopyroxene. The influence of melt composition on DRa/DBa is less than 10%. All investigated minerals have different DRa/DBa, strongly fractionating Ra from Ba. Thus, for magmatic systems, (226Ra)/Ba in the various minerals is not constant, these minerals do not form a straight line in the (226Ra)/Ba–(230Th)/Ba system at the time of crystallization and thus, there is no (226Ra)/Ba–(230Th)/Ba isochron at t0. 226Ra–230Th–Ba mineral dating is thus applicable only to model ages calculated from mineral–glass pairs with known DRa.  相似文献   

13.
Dikes of biotitic shonkinites and minettes of the complex Ryabinovyi alkaline massif (Central Aldan) have been studied. The dikes are localized in a neck of K-picrites in the northeast of the massif, which intrudes gold-bearing microcline–muscovite metasomatites (Muscovitovyi site). The obtained data on the chemical and trace-element compositions of the rocks and minerals and study of melt inclusions in clinopyroxenes indicate that the biotitic shonkinites and minettes crystallized from the same deep-seated high-pressure alkaline ultrabasic magma during its evolution. Apparently, at the early stage of crystallization of diopside in the biotitic shonkinites, homogeneous carbonate–silicate melt was separated into immiscible fractions of silicate, carbonate–salt, and carbonate melts. The temperature of melt immiscibility was > 1120–1190 °C, i.e., higher than the homogenization temperature of silicate inclusions in the diopside. The contents of trace elements in the biotitic shonkinites and rock-forming clinopyroxenes were one or two orders of magnitude higher than the mantle values. The Eu/Eu* ratios of both the considered rocks and the clinopyroxenes were close to those of chondrites, which testifies to their crystallization from mantle magma. The HREE/LREE ratio indicates that the magma source was localized at the depths where garnet-spinel assemblages existed. The negative Nb and Ti anomalies in the trace-element spectra and the high (> 5) La/Nb ratios in the rocks and clinopyroxenes point to the influence of crustal material on the parental magma. Crystallization of magma took place in reducing conditions, which is evidenced by the low (4–7) Ti/V ratios in clinopyroxenes and the presence of chloride–sulfate inclusions in them. Since gold in the Ryabinovyi massif is associated with late sulfate–chloride and sulfate–carbonate fluids, it might have been transported by alkaline chloride–sulfate and carbonate (carbonatite) melts, found as inclusions in clinopyroxenes of the biotitic shonkinites, at the early stages of Mesozoic magmatism.  相似文献   

14.
The Makeng iron deposit is located in the Yong’an-Meizhou depression belt in Fujian Province, eastern China. Both skarn alteration and iron mineralization are mainly hosted within middle Carboniferous-lower Permian limestone. Five paragenetic stages of skarn formation and ore deposition have been recognized: Stage 1, early skarn (andradite–grossular assemblage); Stage 2, magnetite mineralization (diopside–magnetite assemblage); Stage 3, late skarn (amphibole–chlorite–epidote–johannsenite–hedenbergite–magnetite assemblage); Stage 4, sulfide mineralization (quartz–calcite–fluorite–chlorite–pyrite–galena–sphalerite assemblage); and Stage 5, carbonate (quartz–calcite assemblage). Fluid inclusion studies were carried out on inclusions in diopside from Stage 2 and in quartz, calcite, and fluorite from Stage 4.Halite-bearing (Type 1) and coexisting two-phase vapor-rich aqueous (Type 3) inclusions in the magnetite stage display homogenization temperatures of 448–564 °C and 501–594 °C, respectively. Salinities range from 26.5 to 48.4 and 2.4 to 6.9 wt% NaCl equivalent, respectively. Two-phase liquid-rich aqueous (Type 2b) inclusions in the sulfide stage yield homogenization temperatures and salinities of 182–343 °C and 1.9–20.1 wt% NaCl equivalent. These fluid inclusion data indicate that fluid boiling occurred during the magnetite stage and that fluid mixing took place during the sulfide stage. The former triggered the precipitation of magnetite, and the latter resulted in the deposition of Pb, Zn, and Fe sulfides. The fluids related to magnetite mineralization have δ18Ofluid-VSMOW of 6.7–9.6‰ and δD of −96 to −128‰, which are interpreted to indicate residual magmatic water from magma degassing. In contrast, the fluids related to the sulfide mineralization show δ18Ofluid-VSMOW of −0.85 to −1.04‰ and δD of −110 to −124‰, indicating that they were generated by the mixing of magmatic water with meteoric water. Magnetite grains from Stage 2 exhibit oscillatory zoning with compositional variations in major elements (e.g., SiO2, Al2O3, CaO, MgO, and MnO) from core to rim, which is interpreted as a self-organizing process rather than a dissolution-reprecipitation process. Magnetite from Stage 3 replaces or crosscuts early magnetite, suggesting that later hydrothermal fluid overprinted and caused dissolution and reprecipitation of Stage 2 magnetite. Trace element data (e.g., Ti, V, Ca, Al, and Mn) of magnetite from Stages 2 and 3 indicate a typical skarn origin.  相似文献   

15.
The skarn type copper deposits are widespread in the Jiurui district in the Middle-Lower Yangtze River metallogenic belt. This paper reports a detailed study on mineral chemistry, and H, O, S and Pb isotopic compositions on skarn silicate and sulfide minerals in the three major skarn dominant deposits (Wushan, Dongleiwan and Dengjiashan). The Wushan skarn deposit is characterized with prograde garnet-dominated and clinopyroxene limited skarns with average andradite content of 83% and hedenbergite content of 10%, whereas the Dongleiwan and Dengjiashan deposits are featured with retrograde skarn alteration with abundant hydrous minerals such as epidote and chlorite. The garnet and clinopyroxene compositions show 59% andradite and 15% hedenbergite for the Dongleiwan skarns, and 43% and 22% for the Dengjiashan skarns respectively. The pistacite components (Ps value) defined as Fe3 +/(Fe3 ++ Al) and Fe3 +/Fe2 + value of epidote are 0.12 and 1.63 for the Wushan skarns, 0.30 and 32.73 for the Dongleiwan skarns, and 0.17 and 42.85 for the Dengjiashan skarns. It is suggested that the prograde skarn mineralization in the three deposits was all formed in a relatively oxidizing environment, with the Wushan showing the highest oxidation potential and the Dengjiashan having the least oxidation potential. However, in the retrograde skarns, the Dongleiwan and Dengjiashan deposits show higher oxidation potential than that of Wushan. The three deposits show similar sulfur isotopic compositions of − 2.9 to + 1.4‰ and similar lead isotopic compositions with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 17.900 to 18.205, 15.538 to 15.649 and 38.170 to 39.025, respectively. All the three deposits should have similar magmatic origin for the ore-forming materials based on their S and Pb isotopes. The oxygen isotopic compositions of the prograde and retrograde fluids in the three deposits show some differences, with δ18OFluid values of + 8.13‰ and + 7.81‰ for the Wushan, + 6.47‰ and + 2.33‰ for the Dongleiwan, and + 8.27‰ and + 4.43‰ for the Dengjiashan. But the hydrogen isotopic compositions are similar for the prograde (− 65 to − 31‰) and retrograde (− 64 to − 33‰) fluids. Therefore, the fluid origins and evolution may be different in each deposit. The hydrothermal fluids for the prograde skarns in all three deposits were likely derived from magmatic–hydrothermal sources, but the Dongleiwan and Dengjiashan show a higher proportion of meteoric water input in the retrograde stage. Considering the similar average prograde temperatures (574 to 560 °C) as calculated from coexisting garnet–clinopyroxene pairs, and similar retrograde temperatures (281 to 246 °C) as calculated from chlorite chemistry for the three deposits, we suggest that the trigger for deposition of sulfide ores in the Wushan garnet-dominated skarn deposit was mainly caused by system cooling with temperature drop along with magmatic intrusion and crystallization process. The Dongleiwan and Dengjiashan skarn deposits constitute a well developed retrograde skarn system with abundant epidote, chlorite, quartz and calcite, which probably caused by fluid mixing of high-temperature saline magmatic–hydrothermal fluids with cooler, oxidizing and dilute meteoric water.  相似文献   

16.
Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.  相似文献   

17.
The Ilímaussaq intrusion, South Greenland, provides an exceptional test case for investigating the changes of stable Fe isotope fractionation of solidus phases with changes in the Fe3+/∑Fe ratio of an evolving melt. The intrusion comprises a sequence of four melt batches that were fed from the same parental alkali basaltic magma. Differentiation produced cumulate rocks that range from augite syenite (phase I) over peralkaline granite (phase II) to agpaitic syenites (phases IIIa and IIIb). Fe3+/∑Fe ratios in amphiboles increase substantially from phase I to phase II and III rocks and mark a major change in the parental magma composition from augite syenites to peralkaline granites and agpaitic syenites. Before this transition, olivine, clinopyroxene, and amphibole in augite syenite, the most primitive rock type in the Ilímaussaq Complex, have a uniform Fe isotope composition that is identical to that of the bulk of igneous crustal rocks and approximated by the average isotopic composition of basalts (δ56/54FeIRMM-014 = 0.072 ± 0.046‰). After the transition, amphiboles in the peralkaline granites and agpaitic syenites yield significantly heavier Fe isotope compositions with δ56/54FeIRMM-014 values ranging from 0.123 to 0.237‰. Contamination of the Ilímaussaq magma by ongoing crustal assimilation as cause for this increase can be excluded on the grounds of Nd isotope data. Large-scale metasomatic overprint with an external fluid can also be dismissed based on amphibole O and Li isotope systematics. Rather, the increase towards heavy Fe isotope compositions most likely reflects the change in chemical compositions of amphiboles (calcic in augite syenite to sodic in the agpaitic syenites) and their Fe3+/ΣFe ratios that mirror changes in the chemical composition of the melt and its oxygen fugacity. A sensitive adjustment of equilibrium Fe isotope fractionation factors to amphibole ferric/ferrous ratios is also supported by beta-factors calculated from Mössbauer spetroscopy data. Comparison of the measured isotope fractionation between clinopyroxene and amphibole with that predicted from Mössbauer data reveal Fe isotope systematics close to equilibrium in augite syenites but Fe isotopic disequilibrium between these two phases in phase IIIa agpaitic syenites. These results are in agreement with O and Li isotope systematics. While amphiboles in all Ilímaussaq lithologies crystallized at temperatures between 650 and 850 °C, textural evidence reveals later clinopyroxene crystallization at temperatures as low as 300–400 °C. Therefore, isotopic equilibrium at crystallization conditions between these two phases can not be expected, but importantly, subsolidus reequilibration can also be dismissed.  相似文献   

18.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

19.
The Late Cretaceous bimodal Yunshan (Yongtai) volcanics in Fujian province contain peralkaline rhyolites, the only presence of such rhyolites in southeastern China. Whole-rock and mineral chemical compositions are analyzed for the coexisting aluminous (metaluminous to weakly peraluminous)-peralkaline high-silica rhyolites from the Yunshan volcanics. They are sparsely porphyritic, and contain K-feldspar, ferromagnesian minerals, quartz, magnetite, and titanomagnetite phenocrysts, as well as accessory minerals such as fayalite, chevkinite, apatite and zircon. The mineral assemblage indicates an oxidizing pre-eruption condition. These rhyolites exhibit diagnostic geochemical features of A-type granites, such as elevated 104 * Ga/Al (mostly greater than 2.6) and FeOT/(FeOT + MgO) ratios, enrichment in high field strength elements (HFSE) such as Zr (>400 ppm) and Nb, and strong depletion in Al2O3 (<13 wt%), CaO, Ba and Sr. On the basis of their petrographic and geochemical characteristics, it is suggested that the rhyolite magmas are derived from partial melting of H2O-poor (meta) granitic igneous rocks in the deep crust, and cannot be fractionated from the coeval Yunshan mafic magmas. Geochemical variations of major and trace elements indicate the possible fractionation of K-feldspar, calcium-rich pyroxene, Fe–Ti oxides and minor chevkinite during the magma evolution. In peralkaline rhyolites, we found that the pre-existing Fe–Ti oxide and hedenbergite phenocrysts had been transformed into aegirine + oxide and aegirine + oxide + fluorite assemblages, respectively. These mineral assemblages are the products of the subsolidus reaction of pre-existing phenocrysts and extraneous Na–F-rich fluids. Such Na–F-rich fluids may be derived from the degassing of the subvolcanic rocks. The reactions indicate that the Yunshan peralkaline rhyolites could be generated through the reaction of highly fractionated aluminous silica magmas and Na–F-rich fluids.  相似文献   

20.
Devonian magmatism was very intensive in the tectonic evolutionary history of the Chinese Altai, a key part of the Central Asian Orogenic Belt (CAOB). The Devonian Keketuohai mafic–ultramafic complex in the Chinese Altai is a zoned intrusion consisting of dunite, olivine gabbro, hornblende gabbro and pyroxene diorite. The pyroxene diorite gives a zircon U–Pb age of 409 ± 5 Ma. Variations in mineral assemblage and chemical composition suggest that the petrogenesis of the Keketuohai Complex was chiefly governed by fractional crystallization from a common magma chamber. Low SiO2, K2O and Na2O contents, negative covariations between P2O5, TiO2 and Mg# value suggest insignificant crustal assimilation/contamination. Thus the positive εNd(t) values (0 to + 2.7) and slight enrichments in light rare earth elements (e.g., La/YbN = 0.98–3.64) suggest that their parental magma was possibly produced by partial melting of the lithospheric mantle. Model calculation suggests that their parental magma was high-Mg (Mg# = 66) tholeiitic basaltic melt. The Keketuohai intrusion was coeval with diverse magmatism, high temperature metamorphism and hydrothermal mineralization, which support a previously proposed model that ridge subduction most likely played an important role in the tectonic evolution of the Chinese Altai.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号