首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Sedimentology》2018,65(5):1504-1519
Eocene oceanic red beds that formed in a well‐oxygenated setting at low sedimentation rates below the calcite compensation depth are effectively barren of organic carbon in the present state. Recurrent distal low‐erosive turbidites preserve the bioturbated zone underneath that documents seasonal and long‐term fluctuating accumulation of considerable amounts of organic matter on the sea floor as evidenced by Scolicia ; the producers of this trace fossil exploited nutritious organic matter conserved in turbidite‐buried sea floor deposits. Over the long‐term, slow average sedimentation of (hemi)pelagic oxic (red) mud led to long oxygen exposure times and low burial of organic matter. Consequently, trace fossils representing persistent sediment‐feeding modes are of small size. Although the food‐limited setting appears appropriate for producers of graphoglyptids, such ‘stationary’ burrows have not been encountered because seasonal deposition of organic matter fostered at least temporary surface layer feeding organisms, for instance producers of Nereites irregularis that intensively reworked the sediment and, hence, hindered graphoglyptid production. These findings confirm palaeoceanographic modelling results that suggest upwelling in the study area during the Eocene.  相似文献   

2.
《Applied Geochemistry》2003,18(8):1149-1163
A core collected in the Guaymas Basin contained an organic-poor, Mn oxide-rich and (relatively) Fe oxide-rich turbidite layer that affected the distribution of Fe, Mn, C, S and trace metals. Results indicate that sediments not influenced by the turbidite layer achieved a 100% degree of pyritization and, by extension, that pyrite production is Fe-limited in these sediments. In contrast, the mud slide layer apparently supplied enough reactive Fe to transfer essentially 98% of the total S present at the base of the turbidite (17–19 cm) to the pyrite reservoir. C/S ratios showed rapid decreases with depth, from a high of 38 close to the sediment-water interface, to minimum values of 2.8 at the lower limit of the turbidite layer, a ratio equal to the average C/S value of normal marine modern sediments, where concentrations of organic C and pyrite supposedly have attained quasi-steady values. A significant part of the reactive Mn was associated with carbonates (41±12%) and, to a much lower degree, with pyrite (2.7±1.2%). The turbidite layer is currently showing a depletion of Mn relative to the host sediment. It is possible that Mn, a major metal constituent in these sediments, was initially present in high concentrations in the mud slide, but was eventually mobilized and transferred either to the water column or to the sediments immediately below the turbidite layer. Metals associated with this element probably followed the same path, affecting their incorporation into pyrite. The turbidite layer apparently affected the distribution of most of the trace metals associated with pyrite, except maybe Cd, Pb and, to a certain, extent Cr. However, Cu, Cr, Zn, Ni and Co were all found to be highly pyritized (>80%) in the sediments of the Guaymas Basin.  相似文献   

3.
Recognition of the occurrence and extent of hemipelagic and pelagic deposits in turbidite sequences is of considerable importance for environmental analysis (palaeodepth, circulation, distance from land, hemipelagic or pelagic versus turbidite sedimentation rates) of ancient basins. Differentiation between the finegrained parts (E-division) of turbidites and the (hemi-) pelagic layers (F-division of turbidite-pelagite alternations) is facilitated in basins where carbonate turbidites were deposited below the carbonate compensation depth (CCD) such as the Flysch Zone of the East Alps but may be difficult in other basins where less compositional contrast is developed between the fine-grained turbidites and hemipelagites. This difficulty pertains particularly in Palaeozoic and older basins. For Late Mesozoic-Cenozoic oceans with a relatively deep calcite compensation level three other types of turbidite basins may be distinguished for which differentiation becomes increasingly more difficult in the sequence from (1) to (3): (1) terrigenous turbidite basins above the CCD; (2) carbonate turbidite basins above the CCD; (3) terrigenous turbidite basins below the CCD. Criteria and methods useful for the differentiation between turbiditic and hemipelagic mudstone in the Upper Cretaceous of the Flysch Zone of the East Alps include calcium carbonate content, colour, sequential analysis, distribution of bioturbation, and microfaunal content. In modern turbidite basins clay mineral content, organic matter content, plant fragments, and grain-size (graded bedding, maximum grain diameter) have reportedly also been used as criteria (see Table 3). Deposition of muddy sediment by turbidity currents on weakly sloping sea bottoms such as the distal parts of deep-sea fans or abyssal plains is not only feasible but may lead to the accumulation of thick layers. Contrary to earlier speculation it can be explained by the hydrodynamic theory of turbidity currents, if temperature differences between the turbidity current and the ambient deep water as well as relatively high current velocities for the deposition of turbiditic muds (an order of magnitude higher on mud surfaces than commonly assumed) are taken into consideration. The former add to the capacity of turbidity currents to carry muddy sediment without creating a driving force on a low slope.  相似文献   

4.
Co‐genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud‐poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud‐poor sandstone, siltstone and mudstone show features indicating progressive layer‐by‐layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co‐genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin‐plain settings. Co‐genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud‐rich sea‐floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (> 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run‐out on low‐gradient sea floor (< 0·1°) may simply be due to low yield strength (? 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.  相似文献   

5.
In Upper Jurassic carbonate turbidites of the Betic mountains (southern Spain), chert occurs in three morphologies: bedded chert, nodular chert and mottled chert. The last refers to a weak dispersed and selective silification which gives a speckled appearance to the rock. The three types of chert are formed by replacement of limestones and are associated with different calcareous facies. Turbidite packstones of Saccocoma and peloids, and turbidite lime mudstones of pelagic material contain bedded and nodular cherts. The silicification textures are mainly micro- and cryptocrystalline quartz, with local chalcedonic quartz (both length-fast and length-slow) which is more common in the packstones. Only mottled chert is produced where calcareous breccia beds are silicified. Mottled chert consists of micro- and cryptocrystalline quartz, length-slow chalcedonic quartz and mosaics or individual crystals of euhedral megaquartz. Beds and nodules are the result of early diagenetic silicification, with silica derived from the calcitization and dissolution of radiolarians and, subordinately, sponge spicules, whereas mottled chert is the consequence of later silicification in a probably Mg-rich environment. Early silicification is mainly confined to turbidite beds and only rarely occurs in the interbedded pelagic limestones. Turbidite sedimentation favours silicification because rapid burial of the transported siliceous tests prevents silica from the dissolution of tests passing into overlying sea water. A silica-rich interstitial fluid develops in the turbidite layer and this migrates to more permeable zones giving rise to bedded and nodular chert.  相似文献   

6.
Organic-rich mudstones have long been of interest as conventional and unconventional source rocks and are an important organic carbon sink. Yet the processes that deposited organic-rich muds in epicontinental seaways are poorly understood, partly because few modern analogues exist. This study investigates the processes that transported and deposited sediment and organic matter through part of the Bowland Shale Formation, from the Mississippian Rheic–Tethys seaway. Field to micron-scale sedimentological analysis reveals a heterogeneous succession of carbonate-rich, siliceous, and siliciclastic, argillaceous muds. Deposition of these facies at basinal and slope locations was moderated by progradation of the nearby Pendle delta system, fourth-order eustatic sea-level fluctuation and localized block and basin tectonism. Marine transgressions deposited bioclastic ‘marine band’ (hemi)pelagic packages. These include abundant euhaline macrofaunal tests, and phosphatic concretions of organic matter and radiolarian tests interpreted as faecal pellets sourced from a productive water column. Lens-rich (lenticular) mudstones, hybrid, debrite and turbidite beds successively overlie marine band packages and suggest reducing basin accommodation promoted sediment deposition via laminar and hybrid flows sourced from the basin margins. Mud lenses in lenticular mudstones lack organic linings and bioclasts and are equant in early-cemented lenses and in plan-view, and are largest and most abundant in mudstones overlying marine band packages. Thus, lenses likely represent partially consolidated mud clasts that were scoured and transported in bedload from the shelf or proximal slope, as a ‘shelf to basin’ conveyor, during periods of reduced basin accommodation. Candidate in situ microbial mats in strongly lenticular mudstones, and as rip-up fragments in the down-dip hybrid beds, suggest that these were potentially key biostabilizers of mud. Deltaic mud export was fast, despite the intrabasinal complexity, likely an order of magnitude higher than similar successions deposited in North America. Epicontinental basins remotely linked to delta systems were therefore capable of rapidly accumulating both sediment and organic matter.  相似文献   

7.
ABSTRACT The Moroccan Turbidite System (MTS) on the north‐west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep‐water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large‐volume (> 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin‐wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (< 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand‐rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large‐volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea‐level change and do not appear to be specifically connected to sea‐level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea‐level change.  相似文献   

8.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

9.
华庆地区位于晚三叠世鄂尔多斯盆地湖盆沉积中心,长6油层组沉积复杂,具有多物源控制、深水沉积的特征。主要沉积类型可划分为半深湖—深湖沉积、重力流沉积及深水三角洲沉积。不同流态的流体在不同阶段和位置可以相互转化、相伴出现。在湖退背景下长6发育厚层砂体,成因复杂,主要包括深水三角洲砂体、滑塌砂体、砂质碎屑流砂体和浊积砂体等类型。其中三角洲砂体发育各种交错层理;滑塌砂体多顶底突变,发育滑动面;砂质碎屑流沉积颗粒大小混杂,含泥岩撕裂屑;浊积砂体通常为正粒序,或呈块状。从平面上分析,东北物源控制区主要为进积的三角洲砂体、滑塌砂体夹浊积砂体;西部、西南物源影响区主要为浊积砂体、滑塌和砂质碎屑流砂体;混源区和东北物源体系的前端主要为砂质碎屑流砂体、滑塌砂体和浊积砂体。  相似文献   

10.
The processes of flow deformation of marine mass-transport sediments, including their ability to affect the underlying substrate and add mass during sediment flow events, are addressed based on sedimentological analyses of strata from the distal part of a ~61-m-thick mass-transport deposit (MTD 6) drilled during Integrated Ocean Drilling Program (IODP) Expedition 333. Our analyses, supported by 3D seismic data, show a cohesive density flow deformed by folding, faulting and shear, except for its lowermost part (~7 m), where no deformation and sediment entrainment was identified. While the lowermost part moved as rigid sediment, the underlying sand layer acted as the basal shear zone for this part of the distal MTD 6. This shear zone was restricted to the sand, not involving the overlying sediments. From this, the studied part of MTD 6 was found to represent a case where the flow behaviour at least partly depended on the location and properties of the underlying sand layer, a situation that so far has received little attention in studies of marine flows. Our results also show that shear-induced mixing, located by the initial layering, is an important process in the flow transformation from cohesive slumps to mud flows and that this may occur over short distances (<4 km) without involving disintegration into blocks, probably due to only moderate prefailure consolidation of the sediments involved. In conclusion, we find that the bulk part of the flow was self-contained from a mass balance point of view and that that the overall amount of entrainment was limited.  相似文献   

11.
Two cores from a NE Atlantic pelagic clay area of low accumulation rate each contain a single turbidite with different age, thickness and composition. Diagenesis following introduction of exotic turbidite material into the pelagic clay sequence has resulted in distinctive colour changes. The diagenetic process is thought to be driven by bacterially-mediated organic oxidation, and compositional differences in the turbidites and clays allow examination of the effects on metal concentrations of this process.In one core, a long turbidite section emplaced 330,000 years ago is overlain by clay. Organic oxidation has apparently proceeded from the turbidite top downwards and has maintained a U concentration peak below the oxidation front marked by a colour change. The U source is believed to be U initially associated with the organic matter in the oxidised section of the turbidite. Vanadium and Cu behave similarly, but upward migration of the redox-sensitive metals Mn and Ni is also seen. In the second core an 8 cm turbidite section was emplaced about 170,000 years ago in a clay column. In this case organic consumption now appears complete, but evidence for diagenetic effects is found in a 16 cm compositional alteration ‘halo’ of the underlying pelagic clay. Fe(II) has been enriched and the hydrogenous component of Mn, Co, Ni and Cu removed from the pelagic clay to form the halo.  相似文献   

12.
Deepwater/deep-marine turbidite lobes are the most distal part of a siliciclastic depositional system and hold the largest sediment accumulation on the seafloor. As many giant hydrocarbon provinces have been discovered within deepwater lobe deposits, they represent one of the most promising exploration targets for hydrocarbon industry. Deepwater exploration is characterized by high cost, high risk but insufficient data because of the deep/ultra–deepwater depth. A thorough understanding of the deepwater turbidite lobe architecture, hierarchy, stacking pattern and internal facies distribution is thus vital. Recently, detailed outcrop characterizations and high–resolution seismic studies have both revealed that the deepwater lobe deposits are characterized into four–fold hierarchical arrangements from "beds", to "lobe elements", to "lobes" and to "lobe complex". Quantitative compilations have shown that hierarchical components of lobe deposits have similar length to width ratios but different width to thickness ratios depending on different turbidite systems. At all hierarchical scales, sand–prone hierarchical lobe units are always separated by mud–prone bounding units except when the bounding units are eroded by their overlying lobe units thus giving rise to vertical amalgamation and connectivity. Amalgamations often occur at more proximal regions suggesting high flow energy. A mixed flow behavior may occur towards more distal regions, resulting in deposition of "hybrid event beds". These synthesized findings could(1) help understand the lobe reservoir distribution and compartmentalization therefore benefit the exploration and development of turbidite lobes within the deep marine basins(e.g. South China Sea) and(2) provide rules and quantitative constraints on reservoir modeling. In addition, the findings associated with deepwater turbidite lobes might be a good starting point to understand the sedimentology, architecture and hierarchy of turbidites in deep lacustrine environment.  相似文献   

13.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   

14.
以松南西斜坡大布苏地区青一段薄层细粒浊积岩地层为例,以高分辨率层序地层学和沉积学理论为指导,建立了五级层序的高精度等时地层格架,并用最大熵频谱分析进行验证。利用岩芯、测井和地震手段,总结了研究区浊积岩的沉积特征及与三角洲前缘沉积相的区别,通过单井、连井以及RMS振幅确定了坡折带的位置及浊积岩沉积分布规律,得出该区浊积岩属于三角洲前缘河口坝远源缓坡滑塌成因,为线物源、砂泥混合型。薄层细粒浊积岩沉积规律研究表明:①滑塌浊积体主要分布于基准面下降期,靠近层序界面,厚度较大,垂向上表现为叠加或与浊积水道呈互层,且向上厚度增大;②上升期浊积水道往往靠近层序界面,厚度较大,表现为“箱状”水道主体,下降期浊积水道靠近湖泛面,厚度较小,表现为“尖指状”水道侧翼;浊积水道随基准面上升厚度减薄,随基准面下降厚度增加;③浊积席状砂主要分布在较深水、最大湖泛面附近,厚度较薄,或表现为垂向上叠加,或与湖相泥岩、浊积水道侧翼及滑塌浊积体呈互层关系。勘探实践表明研究区薄层细粒浊积岩可以获得较高的油气产量。  相似文献   

15.
东濮凹陷濮卫环洼带沙三段沉积体系及储层发育规律   总被引:4,自引:0,他引:4  
为了提高东濮凹陷濮卫环洼带隐蔽油气藏的勘探精度,以层序地层学理论和瓦尔特相律为指导,通过钻井岩芯、测井和地震的三元分析法,综合构造-地层分析,在东濮凹陷濮卫环洼带沙三段共识别出湖底扇、滨浅湖砂坝-风暴、低位盐湖、三角洲、深湖-半深湖等五种沉积体系,分析了主要储层发育期沉积体系的时空展布特征,探讨了层序地层体制下沙三段的沉积体系发育模式及储层发育规律,指出环洼带东部及北部水下河道与坡折带的交汇处是储层的主要发育地带,其沉积体系主要为湖底扇、三角洲沉积体系.  相似文献   

16.
Grain‐size breaks are surfaces where abrupt changes in grain size occur vertically within deposits. Grain‐size breaks are common features in turbidites around the world, including ancient and modern systems. Despite their widespread occurrence, grain‐size breaks have been regarded as exceptional, and not included within idealized models of turbidity current deposition. This study uses ca 100 shallow sediment cores, from the Moroccan Turbidite System, to map out five turbidite beds for distances in excess of 2000 km. The vertical and spatial distributions of grain‐size breaks within these beds are examined. Five different types of grain‐size break are found: Type I – in proximal areas between coarse sand and finer grained structureless sand; Type II – in proximal areas between inversely graded sand overlain by finer sand; Type III – in proximal areas between sand overlain by ripple cross‐laminated finer sand; Type IV – throughout the system between clean sand and mud; and Type V – in distal areas between mud‐rich (debrite) sand and mud. This article interprets Types I and V as being generated by sharp vertical concentration boundaries, controlled by sediment and clay concentrations within the flows, whilst Types II and III are interpreted as products of spatial/temporal fluctuations in flow capacity. Type IV are interpreted as the product of fluid mud layers, which hinder the settling of non‐cohesive grains and bypasses them down slope. Decelerating suspensions with sufficient clay will always form cohesive layers near to bed, promoting the generation of Type IV grain‐size breaks. This may explain why Type IV grain‐size breaks are widespread in all five turbidites examined and are commonplace within turbidite sequences studied elsewhere. Therefore, Type IV grain‐size breaks should be understood as the norm, not the exception, and regarded as a typical feature within turbidite beds.  相似文献   

17.
18.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

19.
Abstract A study of the seafloor of the Gulf of Cadiz west of the Strait of Gibraltar, using an integrated geophysical and sedimentological data set, gives new insights into sediment deposition from downslope thermohaline bottom currents. In this area, the Mediterranean Outflow (MO) begins to mix with North Atlantic waters and separates into alongslope geostrophic and downslope ageostrophic components. Changes in bedform morphology across the study area indicate a decrease in the peak velocity of the MO from >1 m s?1 to <0·5 m s?1. The associated sediment waves form a continuum from sand waves to muddy sand waves to mud waves. A series of downslope‐oriented channels, formed by the MO, are found where the MO starts to descend the continental slope at a water depth of ≈700 m. These channels are up to 40 km long, have gradients of <0·5°, a fairly constant width of ≈2 km and a depth of ≈75 m. Sand waves move down the channels that have mud wave‐covered levees similar to those seen in turbidite channel–levee systems, although the channel size and levee thickness do not decrease downslope as in typical turbidite channel systems. The channels terminate abruptly where the MO lifts off the seafloor. Gravity flow channels with lobes on the basin floor exist downslope from several of the bottom current channels. Each gravity flow system has a narrow, slightly sinuous channel, up to 20 m deep, feeding a depositional lobe up to 7 km long. Cores from the lobes recovered up to 8·5 m of massive, well‐sorted, fine sand, with occasional mud clasts. This work provides an insight into the complex facies patterns associated with strong bottom currents and highlights key differences between bottom current and gravity flow channel–levee systems. The distribution of sand within these systems is of particular interest, with applications in understanding the architecture of hydrocarbon reservoirs formed in continental slope settings.  相似文献   

20.
Río Fardes剖面位于西班牙南部Granada东北,构造上属于深水环境的Subbetic中带。该剖面主要由白垩纪Fardes组第Ⅱ段和第Ⅲ段(半)远洋沉积构成,并出现浊流沉积和混杂沉积。本次研究在Fardes组浊流层序内首次发现两段红色沉积。钙质超微化石表明红层的时间从Turonian早期(UC7 带)到Coniacian中期—晚期界线(UC10/?UC11带)。红层由mm级红色泥岩夹灰色、杂色、偶尔黑色泥岩和钙质泥岩组成。沉积学研究表明新发现的Turonian Coniacian远洋红色泥岩沉积形成于CCD面之下深水盆地环境,浊流和碎屑流沉积强烈地影响着(半)远洋环境的背景泥岩相,并成为红色沉积结束的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号