首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
利用沙澧河流域上游关键区2003-2006年6-8月降水资料和同时段T213产品中预报产品,分析了关键区强降水发生前24h T213产品中比湿、相对湿度、水汽通量、水汽通量散度、假相当位温、垂直速度等物理量垂直空间结构特征,并根据不同特征,构建T213物理量"垂叠法"暴雨和大雨预报模型,对沙澧河流域上游关键区分别作大雨以上(面雨量≥20mm)和暴雨以上(面雨量≥40mm)强降水预报。通过检验和试用,该预报模型对2007-2009年6-8月沙澧河流域上游关键区面雨量≥20mm强降水预报准确率平均达54.2%,对面雨量≥40mm强降水预报准确率平均为38.9%。  相似文献   

2.
利用汉江上游流域21个测站1971~2011年汛期(5~10月)逐日降水资料及安康和石泉2000~2011年逐日库流量资料,采用距平分析、Morlet小波分析、Mann-Kendall检验、相关分析及重标极差R/S分形等方法,系统地分析了汉江上游流域汛期面雨量的气候变化特征和未来趋势。结果表明:汉江上游流域汛期降水主要集中在7~9月,月、日面雨量极大值均发生在7月;20世纪80年代为汉江上游流域丰水期,90年代为明显少雨期,进入21世纪以来降水逐渐增长,突变点为2005年,面雨量总体呈不显著增长趋势;强降水主要集中在7月和9月,且日面雨量在50.0 mm及以上的强降水,仅7月就占了一半以上;7月和9月发生3 d以上集中强降水过程的频次显著偏高,20世纪80年代为集中强降水过程的频发期,90年代频次明显下降,21世纪以来频次明显增多,这与汉江流域汛期面雨量的年代际变化趋势相一致。另外,Hurst分形指数为0.690,表明未来汉江上游流域汛期面雨量具有持久性和长效记忆效应,未来雨量虽仍存在着增加趋势,但其变化具有较大的不确定性。  相似文献   

3.
1981~2017年雅砻江流域面雨量变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1981~2017年雅砻江流域18个气象站的逐日降水资料,采用算术平均、滑动平均、线性回归等方法,分析了流域面雨量、雨季的时空分布特征。结果表明:雅砻江流域面雨量随月份起伏明显,年内变化呈单峰型。流域春季面雨量呈增加趋势,夏季面雨量中上游呈稳定趋势,下游呈减少趋势,秋季中游和下游呈减少趋势,冬季变化不明显。流域年平均面雨量由北向南逐渐增多,上游和中游呈上升趋势,下游呈下降趋势。雅砻江流域雨季开始期呈提前趋势,雨季结束期上游和下游有推迟趋势,中游变化趋势不明显。流域强降水主要出现在6~9月,面雨量最大值出现在7月,最小值在1月。流域上游的强降水与中游、下游的基本没有关联度;下游强降水和中游关联度为23.3%。   相似文献   

4.
郭洁  宋雯雯  郑昊  刘新超 《干旱气象》2019,37(3):370-376
利用1961-2016年大渡河流域15个气象站逐日降水资料,采用算术平均法计算上、中、下游三个分段流域的面雨量,对其时空分布特征进行分析,计算流域内雨季开始及结束期。结果表明:(1)大渡河中、上游面雨量呈上升趋势,下游呈下降趋势,下游年降水量相对变率和极差最大,其次是中游,上游最小;夏季流域面雨量最大,占全年降水的50%~60%。5-9月流域面雨量在100~200 mm之间,11月至翌年2月在5~20 mm之间,流域内面雨量峰值出现时间由北向南延迟,上、中、下游相差近1个月。(2)依据雨季转换指标计算出的雨季开始及结束期比依据强降水计算的更稳定,大渡河流域下游进入雨季最早,其次是中游,上游最晚,而上游雨季结束最早,其次是中游,下游最晚,上、中、下游雨季持续时间分别为172 d、182 d和195 d。(3)当上游出现强降水时,中、下游很少同时出现强降水,当下游出现强降水时,中游经常同时也出现强降水。  相似文献   

5.
基于GIS的沙澧河流域面雨量算法对比分析   总被引:3,自引:0,他引:3  
为了获取更客观有效的沙澧河流域面雨量计算方法,提高暴雨强度和落区监测与预报的准确率,利用ArcGIS9.3中的空间分析功能,以沙澧河流域1∶25万地理信息数据、16个气象站和217个加密自动雨量观测站的实况雨量资料为背景数据库,选取反距离加权算法、克里金算法、样条函数算法、泰森多边形算法,对沙澧河流域6个分片区的面雨量进行计算,并对计算结果进行了对比分析。结果表明,面雨量计算精度与雨量观测站密度与分布、降雨强度有关。其中,克里金算法计算的流域面雨量精度较高,更适合于整个沙澧河流域面雨量的计算;其次是泰森多边形算法和反距离加权算法,样条函数法算法应用效果较差。当雨量站点分布密集且比较均匀、降水空间分布均匀时,4种算法均适用于面雨量的计算,其中以克里金算法计算的面雨量使用效果最好;当雨量站点分布密集且比较均匀,降雨强度大,降水空间分布不均匀时,反距离加权算法、克里金算法、泰森多边形算法均适用于流域面雨量的计算,其中以泰森多边形算法计算的面雨量效果最好,样条函数法算法不适用此情况下面雨量的计算。当雨量站点分布密集且比较均匀、降水空间分布均匀时,计算的面雨量较站点或降水空间分布不均匀时计算的面雨量更接近实际情况。  相似文献   

6.
利用汉江流域1967-2000年逐日面雨量资料,分析了汉江流域及其上游、中下游和唐白河流域三个区间面雨量的平均值、极值、降水频次、连续强降水等特征值。结果表明,汉江流域面雨量季节性明显,存在夏汛与秋汛之分;该流域面雨量,20世纪80年代主要为高值期,90年代为低值期,2000年后又进入一个相对高值期,呈11年左右年代际变化;该流域面雨量年变化曲线为较对称的单峰型,峰顶在7月;该流域(连续)强降水主要出现在4-10月,夏季最多,秋季仍可出现相当明显的降水。  相似文献   

7.
普查1981—2012年宜昌站中小洪水个例,统计发现宜昌站中小洪水20世纪80年代偏多,90年代明显偏少,2000年以后有所增加,洪水出现时间呈现最早洪水时间逐渐提前而最晚洪水时间则逐渐推迟趋势;长江上游及分流域致洪面雨量呈现同样的周期性变换规律,长江上游中小洪水6—9月占97%,且各月面雨量特点不同,6月自西向东"阶梯"增加,7月分布较均匀,8月和9月面雨量分布则差异较大;长江上游致洪面雨量流域间差异小,但洪水过程强降雨分布及组合方式较复杂,掌握长江上游致洪面雨量分布特征可为三峡水库中小洪水调度提供科学依据。  相似文献   

8.
近32年长沙市短时强降水的气候变化研究   总被引:1,自引:0,他引:1  
利用长沙市近32 a的1 h、3 h雨量资料,分析了长沙短时强降水年发生次数、月际分布、时段分布、极值分布等气候特征及1 h、3 h雨量极值趋势分析、突变检验。结果表明,长沙市1 h、3 h短时强降水年发生次数的多年平均值为4.4、3.7次,雨强平均为29.2 mm/h、14.8 mm/h。长沙发生1 h短时强降水高峰期为6-8月,3 h短时强降水高峰期为6-7月。1 h短时强降水容易发生在15-17时及20时等时段,3 h短时强降水容易发生在04-08时及01时等时段。1 h、3 h短时强降水年雨量极值大多出现在主汛期。年1 h雨量极值发生在7月最多,6、8月次之;年3h雨量极值发生在6月最多,7月次之。长沙市1 h、3 h短时强降水年雨量极值整体呈弱增加趋势,其长期趋势变化存在明显年代际变化特征和阶段性特征,无突变现象。  相似文献   

9.
利用2000-2012年5-9月1 h降水加密观测资料,统计分析了沙澧河流域短时强降水的时空分布特征,结果表明:沙澧河流域短时强降水的空间分布呈自南向北、自东向西减少的趋势;强降水集中出现在6-8月,7月是最为频发月份。日变化呈双峰结构,子夜到凌晨(23时-次日05时)和傍晚前后(18-19时)为易发生时段。应用常规MICAPS地面和高空观测资料对沙澧河流域短时强降水个例天气系统和触发条件进行分析,总结出4种天气学概念模型,分别是有露点锋西南涡型、无露点锋西南涡型、有露点锋切变线型、无露点锋切变线型。其中西南涡型造成的强降水范围比较大,该类型强降水的落区一般位于西南涡移动方向的右前方或其前部切变线与沙澧河流域附近其他中小尺度系统交汇的区域内;切变线型造成的短时强降水范围相对要小,但局地性更强,该类强降水的产生与冷空气的侵入有很大的关系,强降水的落区产生在切变线移动过程中与沙澧河流域附近中尺度系统相交汇或包围的区域内;当有露点锋存在时,短时强降水更偏向于露点锋的两侧,或在露点锋与地面辐合系统相交汇的附近产生。  相似文献   

10.
为了解基于智能网格降水产品的西江流域面雨量短期预报效果,采用TS评分、漏报率、空报率指标对2019年前汛期(4-6月)和后汛期(7-9月)西江流域20-20时的日面雨量预报进行检验评估。结果表明,汛期各流域TS评分随着面雨量等级增大呈现下降趋势,然而72h内随着预报时效延长,预报效果较为稳定;前汛期东部流域TS评分较西部流域普遍高,而后汛期西部流域的TS评分有所上升;前汛期各级面雨量空报率大于漏报率,而后汛期各级面雨量漏报率较前汛期普遍上升,空报率普遍下降。72h内预报效果受到降水量级因素影响较大,而受到时效延长影响较小;流域预报效果变化可能与西江流域汛期雨带逐渐推进变化有关。  相似文献   

11.
沙、澧河流域面雨量计算及流量预报   总被引:1,自引:0,他引:1  
讨论了适合沙、澧河流域的面雨量计算方法,分析了沙、澧河流域致洪暴雨特征、规律及底水、面雨量、强降水与洪水的关系,给出了沙、澧河关键站的流量预报方法。  相似文献   

12.
水阳江洪峰与强降水   总被引:3,自引:1,他引:3  
用1964-1999年水阳江水位和雨量资料,分析水阳江水位、面雨量变化规律和洪峰出现特征。结果表明,6月平均面雨量为241.5mm,7、8月平均面雨量分别为186.5mm、155.7mm。宣城出现13次超警戒水位过程;新河庄出现25次超警戒水位过程,且连续超警戒水位日数长。洪峰出现前一周为连阴雨天气,一周平均面雨量为164.5mm。季内日面雨量存在60天周期变化现象,新河庄日平均水位存在60-120天周期变化;1999年宣城日平均水位的小波分析结果为60天周期变化,与新河庄日平均水位功率谱分析结果一致。  相似文献   

13.
为了揭示武义县暴雨洪涝的时空变化特征,基于1970-2018年洪涝及暴雨实测数据,统计分析反映时空变化特征的一系列指标,应用多元线性回归模型,建立水位与径流、降雨的多元相关关系。研究结果表明:洪涝在20世纪70至80年代中期次数偏少,其后开始逐渐增多,且具有3a左右的年际周期变化,12a左右和25a左右的年代际周期变化;洪涝主要发生在主汛期6-8月,其中,6月中旬至7月中旬以系统性暴雨为主,洪涝占全年60%,7月下旬至8月短时暴雨明显增多,山洪占全年50%;洪涝与西部型南亚高压、西太平洋副热带高压的变化特征正相关,同时中低层冷暖气流的汇合强度亦有利于产生洪涝;构建武义江流域水位与径流、降雨多元逐步回归模型,提出一种以水位预报为目标的洪水趋势预测方法。  相似文献   

14.
利用T213数值预报产品建立包头市短期降雨预报方程,通过地理信息系统,在Citystar4.0版本软件的支持下,实现大青山区降水随高度的分布模式,计算出主要山区沟河的流域面雨量和降水总量,估计洪峰流量。在GIS(地理信息系统)环境下,研究山区面雨量的预报,通过建立包头市大青山区山体高度降雨量分布的经验公式,得到实现山区沟河流域面的面雨量,最终得到各个沟河流域的最大洪峰流量的估计。  相似文献   

15.
利用印江县气象观测站1970~2018年汛期(5~9月)日降水量,日平均、最高和最低气温资料,采用线性倾向估计、滑动平均法、 Mann一Kendall趋势法、 Morlet小波分析等方法对印江县汛期降水年代际特征进行了研究,并采用相关分析、t 检验等方法研究汛期降水与气温的关系。结果表明:(1)印江县近49a汛期总降水量有不显著的增加趋势,呈现 “增加-减少”的交替年代变化特征。年代尺度演变上,20~35a,10~19a,7~9a以及2~4a的4类周期变化尺度共同起作用,其中27a为第一主周期,9a为第二主周期。(2)印江县近49a 6月、7月和8月对汛期总降水贡献最大,变化趋势和总降水量基本一致;小、中和大雨的年总降水量呈减少,其中中雨减少微弱;暴雨及以上有增加趋势。小和中雨所占百分比呈下降趋势,占百分比最多的大雨也呈下降趋势,但比较微弱,暴雨及以上有上升的趋势。(3)印江县近49a汛期总降水量与汛期最高温度、平均温度呈显著的负相关,月份上与8月最为密切, 7月次之,与其他月的温度相关性不大。不同量级降水量占总降水量的百分比,随日平均、最高气温的升高都呈先上升后下降的趋势,各量级降水的百分比的峰值都有各自的温度区间。  相似文献   

16.
青岛市汛期降水阶段划分及其环流背景特征   总被引:2,自引:1,他引:1  
张丰启  郝燕  张凯静 《气象》2017,43(8):962-972
应用1961年1月到2011年12月的中国722站降水、NCEP/NCAR再分析和青岛市辖7站降水等逐日资料,分析青岛汛期降水阶段及对应的环流气候背景。结果表明:青岛市汛期有5个降水阶段,分别是主汛期开始阶段(6月29日至7月3日),黄淮雨期阶段(7月9—25日),华北雨季阶段(7月27日至8月6日),热带低压阶段(8月11-20日)和主汛期结束阶段(8月29日至9月4日)。其中主雨季(7—8月)呈明显的双峰分布,分别是黄淮雨期阶段和热带低压阶段两个主要降水阶段。副热带高压的季节性移动及其高低空的配置是形成青岛汛期降水阶段的主要成因,各降水阶段对应着相对稳定的天气气候阶段,各降水阶段间的大气环流有明显的突变现象,该研究为细化青岛汛期降水气候预测提供了理论支持。  相似文献   

17.
根据3a来的现洲实验和部分地形资料,确定了雨量点,并在对现测点上游各时段降水量与城区河内涨水的关系、各点最大降雨量与城区河内洪峰到达时间进行分析的基础上。建立了萍水河上游流域降水与城区河内洪峰关系的方程,从而为萍乡市的防洪抢险工作提供科学的决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号