首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 316 毫秒
1.
The literature on climate change from an enhanced greenhouse effect is large and growing rapidly. The problems considered are increasingly inter-disciplinary. For these reasons many workers will find useful pointers to the literature in the fields interacting with, but outside of, their own. We present here an annotated bibliography on issues relating to changes in the concentrations of Earth's greenhouse gases. The areas covered include theory and numerical modelling of climate change; cycles involving carbon dioxide and other radiatively important trace gases; observations of climate change and the problems associated with those observations; paleoclimatology as it relates to previous changes in the greenhouse gases; the impacts on and interactions with managed and natural ecosystems from climate change; policy issues related to climate change and to the limitation of climate change; history of the study of the greenhouse effect; and some other causes of climate change. Selection of papers has been made to facilitate rapid introduction to most of the important issues and findings in an area. Over 600 articles, reports, and books are discussed.  相似文献   

2.
区域气候模拟研究   总被引:21,自引:1,他引:21       下载免费PDF全文
区域气候模拟是近几年发展起来的研究有限区域气候及气候变化的方法。由于区域气候模式较好地表示了地形和地表状况,同时包含较详细的陆地过程方案,因而能捕获许多大气环流模式难以分辨的区域尺度温度、降水分布和土壤水分变化特征。此外,区域气候模拟对于了解温室气体强迫可能导致的全球增暖在区域尺度上的特征及生态、环境效应也具有重要的意义。该文总结区域气候模式和模拟试验结果,并指出存在问题及今后研究的重点。  相似文献   

3.
This study presents a comparison of the water vapor and clear-sky greenhouse effect dependence on sea surface temperature for climate variations of different types. Firstly, coincident satellite observations and meteorological analyses are used to examine seasonal and interannual variations and to evaluate the performance of a general circulation model. Then, this model is used to compare the results inferred from the analysis of observed climate variability with those derived from global climate warming experiments. One part of the coupling between the surface temperature, the water vapor and the clear-sky greenhouse effect is explained by the dependence of the saturation water vapor pressure on the atmospheric temperature. However, the analysis of observed and simulated fields shows that the coupling is very different according to the type of region under consideration and the type of climate forcing that is applied to the Earth-atmosphere system. This difference, due to the variability of the vertical structure of the atmosphere, is analyzed in detail by considering the temperature lapse rate and the vertical profile of relative humidity. Our results suggest that extrapolating the feedbacks inferred from seasonal and short-term interannual climate variability to longer-term climate changes requires great caution. It is argued that our confidence in climate models' predictions would be increased significantly if the basic physical processes that govern the variability of the vertical structure of the atmosphere, and its relation to the large-scale circulation, were better understood and simulated. For this purpose, combined observational and numerical studies focusing on physical processes are needed.  相似文献   

4.
系统总结和介绍了20世纪90年代以来作者所开展的有关人类活动对东亚和中国气候影响的一系列研究活动.其中包括温室气体辐射强迫及其气候效应,大气微量气体的全球增温潜能,对流层和平流层气溶胶的辐射气候效应,气候系统外部因子对中国气候影响的总体评估,人类活动对中国和东亚地区未来气候变化的影响,以及20世纪和21世纪东亚及中国的气候变化.同时给出了一系列研究成果,这些研究成果对于正确认识和准确预测东亚地区以及中国气候变化具有十分重要的意义.  相似文献   

5.
In the context of the EU-Project BALANCE () the regional climate model REMO was used for extensive calculations of the Barents Sea climate to investigate the vulnerability of this region to climate change. The regional climate model REMO simulated the climate change of the Barents Sea Region between 1961 and 2100 (Control and Climate Change run, CCC-Run). REMO on ~50 km horizontal resolution was driven by the transient ECHAM4/OPYC3 IPCC SRES B2 scenario. The output of the CCC-Run was applied to drive the dynamic vegetation model LPJ-GUESS. The results of the vegetation model were used to repeat the CCC-Run with dynamic vegetation fields. The feedback effect of the modified vegetation on the climate change signal is investigated and discussed with focus on precipitation, temperature and snow cover. The effect of the offline coupled vegetation feedback run is much lower than the greenhouse gas effect.  相似文献   

6.
全球增暖的另一可能原因初探   总被引:14,自引:1,他引:14       下载免费PDF全文
太阳是地球流体(大气和海洋等)运动的最终能量源,地球环境,尤其是气候的变化不能不与太阳活动有关.目前,普遍将全球增暖归结为温室气体含量增加所导致的温室效应的加剧,这无疑是有一定依据和有道理的.但从科学上来讲,人类活动所引起温室气体增加的影响,并非是唯一原因.基于已有的一些研究结果,从太阳活动的观点所进行的初步分析表明,太阳活动也可能是引起近世纪全球增暖的另一个重要原因.太阳活动的影响主要包括太阳辐射的直接影响和引发地磁场变化的间接影响两个方面,地球磁场的变化将可通过动力过程和热力过程而影响大气环流和气候的变化.  相似文献   

7.
Beginning in the mid-1990s, re-eutrophication has reemerged as severe problems in Lake Erie. Controlling non-point source (NPS) nutrient pollution from cropland, especially dissolved reactive phosphorus (DRP), is the key to restore water quality in Lake Erie. To address NPS pollution, previous studies have analyzed the effectiveness of alternative spatially optimal land use and management strategies (represented as agricultural conservation practices (CPs)). However, few studies considered both strategies and have analyzed and compared their sensitivity to expected changes in temperature and precipitation due to climate change and increased greenhouse gas concentrations. In this study, we evaluated impacts of climatic change on the economic efficiency of these strategies for DRP abatement, using an integrated modeling approach that includes a watershed model, an economic valuation component, and a spatial optimization model. A series of climate projections representing relatively high greenhouse gas emission scenarios was developed for the western Lake Erie basin to drive the watershed model. We found that performance of solutions optimized for current climate was degraded significantly under projected future climate conditions. In terms of robustness of individual strategies, CPs alone were more robust to climate change than land use change alone or together with CPs, but relying on CPs alone fails to achieve a high (>?71%) DRP reduction target. A combination of CPs and land use changes was required to achieve policy goals for DRP reductions (targeted at ~?78%). Our results point to the need for future spatial optimization studies and planning to consider adaptive capacity of conservation actions under a changing climate.  相似文献   

8.
古气候的启示   总被引:1,自引:0,他引:1  
王绍武  黄建斌  闻新宇 《气象》2012,38(3):257-265
回顾了近20~30年古气候的研究进展,包括下列问题:雪球和热力极大期、冰期-间冰期旋回、古季风、D/O循环和H事件、全新世季风、全新世气候突变、气候变化与古文明、近2000年的气候。研究表明,第四纪前的气候变化中CO_2起着重要的作用,但是在冰期-间冰期旋回中CO_2变化落后于温度变化。这说明虽然影响机制不同,但是温室气体和气候间有着密切的相互作用这一点则是可以肯定的。地球目前处于间冰期,面临着冰期来临的威胁。人类活动造成的气候变暖有可能推迟下一次冰期的到来。21世纪全球变暖仍将继续,人们可能做的、也是必须要做的,是尽可能地降低变暖的速率,以及可能达到的变暖峰值。  相似文献   

9.
Keith Colls 《Climatic change》1993,25(3-4):225-245
Weather and climate have a significant impact on the Australian society and environment. While the impacts of major changes in the Australian climate likely to occur from the enhanced greenhouse effect have been reported in the literature fewer studies have addressed the impact of the climate's natural variability. Ways in which weather and climate and its variability impact on the decision making process are described and methods available to assess the sensitivity of the economy and the natural environment are also presented. Methods which are being developed to determine the value of weather and climate information to decision makers are briefly described. The El Niño Southern Oscillation is a strong contributor to the variability of the Australian climate. It is used to illustrate the impact of climate variability on both the economy and natural environment of Australia. Finally, the extent to which there is political awareness of the impact of climate variability on the Australian society and environment is briefly examined.  相似文献   

10.
This study was undertaken to determine the impact of potential global warming on the magnitude of hail losses to winter cereal crops within two areas situated on the western slopes of New South Wales, Australia. A model relating historical crop hail losses to climatic variables was developed for each area. These models included seasonal measures of vertical instability, low-level moisture and the height of the freezing level. In both areas, windshear was not found to be an important factor influencing seasonal crop hail losses. The two crop hail loss models were then used in conjunction with upper-air climatic data from three single mixed-layer global climate models (GCMs). Each GCM was run for 1 × CO2 conditions and for 2 × CO2 conditions. The enhanced greenhouse effect on climatic variables was taken to be the difference between their values for these two runs. Changes to climatic variables were then translated directly into changes in the percentage value of the winter cereal crop lost due to hail. In both areas, the three GCMs agreed concerning the direction of change in each of the variables used in the crop hail loss model. GCM simulations of the greenhouse effect resulted in a decline in winter cereal crop hail losses, with the exception of one GCM simulation at one location where losses increased slightly. None of the changes due to the enhanced greenhouse effect, however, were significant owing to a large observed seasonal variability of crop hail losses. Also, the simulated seasonal variability of crop hail losses did not change significantly due to the enhanced greenhouse effect. These results depended on two important assumptions. Firstly, it was assumed that the dominant relationships between climatic variables and crop hail losses in the past would remain the same in a future climate. Secondly, it was assumed that the single mixed-layer GCMs used in the study were correctly predicting climate change under enhanced greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号