首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
利用1961-2010年佳木斯、富锦2个代表站55 a的最大冻土深度及影响冻土的降雪、冬季温度等资料,采用气候趋势系数和气候倾向率的方法,对1961年以来佳木斯地区最大冻土深度变化进行了分析。结果表明,佳木斯地区最大冻土深度年际变化呈减小趋势,西部减小趋势明显大于东部;影响最大冻土深度变化的主要因子是最大积雪深度和冬季平均降水量,而且两者是呈负相关,相关系数通过信度为0.001的显著性检验。  相似文献   

2.
利用1961—2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1cm,年际最大值与最小值深度差为82cm,年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

3.
利用1961~2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1 cm,年际最大值与最小值深度差为82cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75 cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

4.
基于山西68个气象观测站1960—2018年月最大冻土深度资料,应用EOF和小波分析等方法,研究山西年最大冻土深度的时空分布特征。结果表明:(1)1960—2018年山西68站平均年最大冻土深度平均值为71 cm,极端最大值为192 cm,极端最小值为7 cm。近59 a山西68站平均年最大冻土深度呈显著减小趋势,气候倾向率为-1.394 cm·(10 a)^(-1),且在1986年发生一次显著的气候突变。(2)山西68站平均年最大冻土深度存在准4 a周期。(3)山西年最大冻土深度空间分布整体上南浅北深、东浅西深。(4)山西年最大冻土深度EOF分解前2个模态的累积方差贡献率达58.4%,第1模态空间型为全省一致型,第2模态空间型为南北反向型。  相似文献   

5.
高寒地区冻土活动层变化特征分析   总被引:5,自引:0,他引:5  
利用1960-2010年黑龙江省83个气象站的冻土和0 cm地温资料,采用线性回归和多项式回归方法,分析了黑龙江省冻土活动层的时空变化特征,揭示了黑龙江省五个典型气候区域最大冻土深度的变化趋势与特征,讨论了黑龙江省冻土活动层的影响因子。结果表明:黑龙江省冻土活动层冻结开始于9月份,至冬季3月份冻土深度达到最大值,8月份时冻土厚度接近于0 cm。由北向南,最大冻土深度逐渐变小,冻结开始时间逐渐推迟,融化结束时间逐渐提前。黑龙江省最大冻土深度均呈显著减小趋势,存在明显的退化趋势。从年代际变化上看,20世纪90年代前黑龙江省最大冻土深度变化不大,最大冻土深度较深,90年代后最大冻土深度呈显著减小趋势。高纬度地区地温低,在同等条件下冻土深度较低纬度地区大。  相似文献   

6.
我国最大冻土深度变化及初步解释   总被引:18,自引:0,他引:18       下载免费PDF全文
利用我国年最大冻土深度数据集,分析了我国最大冻土深度的空间分布及年代际变化。结果表明,我国最大冻土深度20世纪80年代以来开始减小,90年代显著减小。冻土深度减小的事实,反映了我国冬季极端最低气温升高与我国年平均日较差显著变小的趋势。冻土对气候变化具有敏感性。  相似文献   

7.
利用1959年10月至2018年4月沈阳地区7个气象站逐日冻土观测资料、逐日平均气温、逐日平均地温及5 cm、10 cm、15 cm、20 cm、40 cm地温观测资料,分析了近60 a沈阳地区最大冻土深度的时空变化特征,并探讨了其对气候变暖的响应。结果表明:近60 a来沈阳地区冻土一般在10月开始出现,翌年4月消融。1959-2018年沈阳地区年平均月最大冻土深度在2月和3月最大,10月最小;年最大冻土深度以-4.8 cm/10 a的速度显著变浅,年代平均最大冻土深度也呈变浅趋势。相关分析表明,近60 a沈阳地区日最大冻土深度与日平均气温、地温呈显著负相关关系,相关系数分别为-0.60和-0.72。Mann-Kendall检验表明,7个气象站年平均最大冻土深度均有突变发生,突变点大多出现在20世纪80年代。近60 a沈阳地区最大冻土深度开始日期和结束日期分别呈延后和提前趋势,趋势率分别为1.0 d/10 a和-3.2 d/10 a。1959-2018年沈阳地区平均冻土持续时间为164 d,年变化呈缩短趋势,趋势率为-4.4 d/10 a。  相似文献   

8.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

9.
利用1985—2021年呼伦贝尔市15个国家气象站各层地温、第一冻土层下限、最大冻土深度资料,研究呼伦贝尔市冻土气候演变特征,同时采用重标极差(R/S)和非周期循环分析,统计最大冻土深度等气象要素时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最大冻土深度等气象要素变化趋势和记忆周期。研究表明:(1)0cm地温、40cm平均地温、80cm平均地温都呈现出增大趋势,且0cm地温增大趋势最显著,特别是0cm地温最小值增大更加明显。(2)冻结持续日数呈缓慢减小趋势,其中中部偏北海拔超过600 m山区持续时间最长,西南部和东南部地区持续时间最短。(3)7月中旬冻土在北部地区开始,9月开始到10月下旬向西南和东南地区扩展,次年5月上旬至6月下旬自西南和东南地区向北部地区开始消失。(4)最大冻土深度呈现逐年减小趋势,突变年份出现在1988年,最大冻土深度在7-9月最浅,次年2-4月最深,10月-次年1月是最大冻土深度不断加深的过程,5-6月是最大冻土深度显著减小的时段,其中最大冻土深度最大值出现在西部偏南地区。(5)R/S和非周期循环分析表明,冻结持续日数和最大冻土深度未来减小趋势仍将持续,持续时间分别为10 a和8 a;0cm地温、40cm平均地温、80cm平均地温未来增大趋势仍将持续,持续时间都为12 a。  相似文献   

10.
本文利用若尔盖气象站1971~2011年总共40年的积雪和冻土记录,分析了每年冬春季(10月到第二年5月)积雪和冻土的变化,以及它们与温度和降水的关系。积雪的减少是对全球变暖的响应。与积雪渐渐减少的趋势相比,冻土并没有明显的长期变化趋势,而从冻土与温度的相关性看出,冻土深度与当年温度呈负相关。小波分析表明,最大冻土深度的变化周期为8年,而积雪月平均温度的变化周期为4年。  相似文献   

11.
近50年来中国季节性冻土与短时冻土的时空变化特征   总被引:15,自引:0,他引:15  
陈博  李建平 《大气科学》2008,32(3):432-443
在对中国冻土气象观测资料整理和分析的基础上, 研究了中国冻土分布的时空演变规律。主要分析了中国冻土分布的季节变化、冻土深度的空间变化, 以及冻结日期、解冻日期、冻结时间长度的空间分布特征, 同时也分析了以上各要素的时间变化特征。结果表明: 中国冻土分布广泛, 在我国东部的长江以北地区、西北地区及青藏高原地区均有分布; 其中季节性冻土具有显著的年内变化特征, 冻结一般从秋季开始, 冬末春初冻结的面积和深度达到最大, 春季逐渐开始融化, 夏季冻结的面积和厚度达到最小; 冻土的冻结过程和融化过程表现出各自不同的特征, 整个中国地区冻土的融化过程所持续的时间比冻结持续的时间长, 也更为复杂, 这与地形及土壤特性有着密切的关系; 近几十年来, 在全球变暖背景下, 中国冻土主要表现为最大冻土深度减小, 冻结日期推迟, 融化日期提前, 冻结持续期缩短, 以及冻土下界上升的总体退化趋势, 冻土的主要转型时期发生在20世纪80年代中期。  相似文献   

12.
利用1960-2018年塔城地区9个气象观测站冻土深度及同期气温观测资料,采用数理统计方法分析了其分布状况、变化特征及其与气象因子的关系,结果表明:近59a塔城地区最大冻土深度均在120cm以上,大值区主要分布在中部、南部及托里,冻结初日最早出现于9月上旬,最晚结束于5月中旬;年最大冻土深度除额敏以4.00cm/10a的速率显著增多外,其余各站均表现为减少趋势,其中克拉玛依减幅最大;月际变化中1月、2月、5月、9月、10月仅个别站表现为增多趋势,其余站表现为减少趋势,而3月、4月、11月、12月9站均表现为一致的减少趋势;塔城地区最大冻土深度年际变异系数均表现为中等变异性,表明其对气候变化的响应较敏感;平均冻土深度年代际变化呈现“浅-深-浅-浅-浅-浅”的变化趋势,从1980年代开始平均冻土深度逐渐变浅;影响最大冻土深度变化的因子主要有年(月)平均气温、平均最低气温及气温日较差。  相似文献   

13.
利用1976—2012年甘南藏族自治州8个气象站的冬季最大冻土深度、气温、地温、日照时数、降水量、相对湿度、蒸发、积雪资料,分析了近37年甘南高原冬季最大冻土深度的空间分布以及时间变化特征,进而采用相关系数法进一步探讨了冬季最大冻土深度变化的原因。结果表明:在空间分布上,甘南高原冬季最大冻土深度分布与本地海拔高度和地理位置密切相关。甘南高原冬季最大冻土深度梯度呈西北—东南走向,最大值出现在西北部夏河,最小值出现在东南部舟曲。时间变化上,近37年,甘南高原冬季最大冻土深度呈下降趋势,西北部高海拔区较东南部低海拔区下降更为明显,甘南高原不同地区冬季最大冻土深度在不同时段内存在明显的3—5年和6—7年的周期反映,除合作、玛曲外,在20世纪80到90年代都发生了减小突变。相关系数法分析表明,影响甘南高原冬季最大冻土深度的气象因子主要是热力因子,热力因子中关联最强的是地温和气温,水分因子中与甘南高原大部分站关联最强的是积雪日数。  相似文献   

14.
利用大同市所辖8个站1962—2012年地面气象观测记录中的冻土资料,采用线性倾向估计、累积距平等方法,分析大同市土壤开始冻结期、完全解冻期、冻结期及最大冻土深度的变化特征及其影响因素。结果发现:51年中大同市冻土主要表现为最大冻土深度减小, 开始冻结期推迟,解冻期提前, 冻结持续期缩短的总体变化趋势,冻土除了受气温的影响外,局地因素对最大冻土深度的影响较大。  相似文献   

15.
1962-2007年伊犁河谷冻土分析   总被引:1,自引:0,他引:1  
利用1962--2007年伊犁河谷气象站冻土资料,分析了46a伊犁河谷季节性冻土变化情况。伊犁河谷冻土开始日期逐渐延后,各站的平均开始日期从10月29日延后到11月19日,推迟了20d。冻土结束日期提前,冻土持续时间缩短21d。平均冻土深度和最大冻土深度均减小,其中最大冻土深度从62.47cm减少到51.93cm。  相似文献   

16.
利用1989—2013年平安区气象局冻土资料,分析了25a平安地区季节性冻土变化情况。平安区冻土开始日期逐渐延后,1989—2000年,平均开始日期为11月1日,2001—2013年,平均开始日期为11月8日,平均开始时间推迟了7d。冻土结束日期提前,2000年以前的平均解冻日期是3月21日,2000年以后的平均解冻日期是3月8日,解冻时间提前了13d。冻土持续时间缩短了21d。平均冻土深度和最大冻土深度均减小,其中平均冻土深度从2000年以前的93.5cm减少至2000年以后的88.5cm。平均深度减小了5cm。  相似文献   

17.
利用锡林郭勒盟1961—2018年近58a有完整记录的11个气象站的最大冻土深度、冬季11月—翌年3月平均气温和平均地面最低温度资料,利用描述分析、线性趋势拟合、相关性检验、Mann-Kendall突变检验等方法,对锡林郭勒盟最大冻土深度的时间演变、空间分布及与气温、地温的关系进行了分析。结果表明:二连浩特市最大冻土深度的均方差和变差系数最大,稳定性最差;东乌珠穆沁旗、二连浩特市最大冻土深度变浅幅度最大,气候倾向率为-16.25cm/10a和-15.48cm/10a;20世纪70年代是近58a来最大冻土深度最深的时期;全盟11个站中有5个站最大冻土深度发生突变现象,其中一个站突变点在1982年,其他4个站突变点在1989—1991年;锡林郭勒盟最大冻土深度的空间分布特征为东深西浅、北深南浅;锡林郭勒盟各站11月到翌年3月平均气温和平均地面最低温度均呈上升的趋势;最大冻土深度和平均气温、平均地面最低温度均呈负相关,部分台站相关性显著,随着气温和地温的升高冻土深度在变浅。  相似文献   

18.
河北石家庄浅层地温变化特征   总被引:4,自引:0,他引:4  
利用石家庄地区5个观测站1981~2010年逐日浅层地温观测数据,分析讨论了该地区浅层地温的变化特征及其变化周期。结果表明:从波动变化情况看,年和各季节平均浅层地温波动变率随土层深度加深依次减小,春季波动变率最大,冬季最小;年和各季节平均浅层地温波动幅度随土层深度加深依次减小,减小程度随土层深度加深依次减弱,夏季波动幅度最大,冬季最小;从垂直变化情况看,年平均浅层地温随土层深度加深依次升高,春、夏季随土层深度加深依次降低,秋、冬季随土层深度加深依次升高;从变化趋势情况看,年平均浅层地温均呈现增温趋势,其中,冬季增温最为明显,增温幅度随土层深度加深依次减小,减小程度随土层深度加深依次减弱;平均浅层地温存在9~10 a的低频振荡周期和4~6 a的高频振荡周期,其中,平均5 cm地温低频振荡周期振幅最大,平均10 cm地温高频振荡周期振幅最小。  相似文献   

19.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

20.
以位于青藏高原与黄土高原及陇南山地过渡带的甘南藏族自治州为例,基于考虑土壤冻融界面变化的陆面过程模式研究了1979-2012年冻土变化及水资源与生态系统碳通量对气候变化的响应。结果表明,甘南州气候态多年冻土面积约1. 5×104km2,季节性冻土约占2. 5×10~4km~2,多年冻土最大融化深度呈增加趋势,季节冻土最大冻结深度逐渐减少,整体上冻土正随着气温上升逐步退化;尽管降雨有所增加,而气温上升引起的蒸散发增加也可能是产流减少的原因之一,其中多年冻土区更为敏感,水热变化增减率较季节冻土区大;生态系统碳循环方面,北部主要表现为碳源,南部则表现为碳汇,升温促进植被生长,使得进入生态系统的碳呈略微增加的趋势,尽管总初级生产力(GPP)与净初级生产力(NPP)呈增长趋势,但植被碳利用效率逐步减小,表明气候变化背景下生态系统固碳能力有所退化;最后经多元回归分析可知,气候变化在多年冻土区可以解释66%的NPP变化与31%的生态系统净交换量(NEE)变化,而在季节冻土区则能解释45%的净初级生产力变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号