首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
While extensive aeolian deposits are associated with glaciation, little is known of the mechanisms which produced them. Observation of glaciofluvial sediments in Pangnirtung Pass, N.W.T., indicates that peak deflation occurs in the fall and winter months so that the nature of sediment transport involving frozen surfaces greatly differs from warm environments. Laboratory experiments indicate that such surfaces are mobilized through abrasion, and are most susceptible at low volumetric water content (less than 20%) and low temperature (–20°C). Stable surfaces have volumetric water contents in excess of 30% and temperatures of –15°C. Surface stability also increases with decreasing particle size, density and, possibly, transport load. Collisions with frozen surfaces are relatively elastic with significantly greater kinetic energy transfer to ejected surface grains than observed for loose dry surfaces. Saltation transport in cold environments could therefore be sustained at lower windspeeds than for dry surfaces provided that some loose particles are available initially but do not accumulate at the surface.  相似文献   

3.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Pollen stratigraphy of a core taken from a fen at Fundo Nueva Braunau (40°17.49′S, 73°04.83′W), situated 2 km beyond the western border of Llanquihue‐age glacial drift, spans an age range from an estimated 60 000–70 000 BP to about 14 000 14C yr BP (marine Oxygen Isotope Stages 4–2). The location at present is in the contact zone of Valdivian Evergreen Forest and Lowland Deciduous Beech Forest. Early and late in the pollen record, as indicated by assemblages of southern beech (Nothofagus dombeyi type) and grass (Gramineae), the site was located in Subantarctic Parkland. Intervening assemblages represent expansion of Valdivian–North Patagonian Evergreen Forest (> 49 355 to about 40 000 14C yr BP) and North Patagonian Evergreen Forest–Subantarctic Parkland (approximately 40 000 to 30 000 14C yr BP). Climate over the time span was under the storm regime of the Southern Westerlies and apparently uninterruptedly wet. When Subantarctic Parkland expanded, cold conditions with summer temperatures estimated at 8–9°C (7°C lower than present) resulted in episodes of glacier maxima. Climate moderated during the period of forest expansion, at which time glaciers were in a state of recession. Contrasting with the continuously wet climate of the Lake District for the period of record, climate in semi‐arid–arid, subtropical Chile underwent extended intervals of precipitation. Data from both the terrestrial and marine realm implicate the Southern Westerlies as the cause of intensified storm activity at lower latitudes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide important insights into the conditions that allowed two of the richest terrestrial faunas of this period to flourish. Geochemical analyses and observations of palaeosol morphology in the informally named Upper Jurassic Lourinhã formation of western Portugal indicate warm and wet palaeoclimatic conditions with strongly seasonal precipitation patterns. Palaeosol profiles are dominated by carbonate accumulations and abundant shrink‐swell (vertic) features that are both indicative of seasonal variation in moisture availability. The δ18OSMOW and δDSMOW values of phyllosilicates sampled from palaeosol profiles range from +22·4‰ to +22·7‰ and ?53·0‰ to ?37·3‰, respectively. These isotope values correspond to temperatures of formation between 32°C and 39°C ± 3°, with an average of 36°C, which suggest surface temperatures between 27°C and 34°C (average 31°C). On average, these surface temperature estimates are 1°C higher than the highest summer temperatures modelled for Late Jurassic Iberia using general circulation models. Elemental analysis of matrix material from palaeosol B‐horizons provides proxy (chemical index of alteration minus potassium) estimates of mean annual precipitation ranging from 766 to 1394 mm/year, with an average of approximately 1100 mm/year. Palaeoclimatic conditions during deposition of the Lourinhã formation are broadly similar to those inferred for the Morrison Formation, except somewhat wetter. Seasonal variation in moisture availability does not seem to have negatively impacted the ability of these environments to support rich and relatively abundant faunas. The similar climate between these two Late Jurassic terrestrial ecosystems is probably one of the factors which explains the similarity of their vertebrate faunas.  相似文献   

6.
A field experiment was conducted from 2 May 2010 to 1 May 2012 in the Gurbantunggut Desert, the second largest desert in China, to investigate saltation activity and its threshold velocity, and their relations with atmospheric and soil conditions. The results showed that saltation activity occurred more frequently during 08:00–20:00 Local Standard Time in spring and summer, with air temperatures between 20.0 and 29.0 °C, water vapor pressures between 0.6 and 0.9 kPa, soil temperatures between 25.0 and 30.0 °C, and a soil moisture lower than 0.04 m3/m3. At 2 m height, the saltation threshold velocity varied between 11.1 and 13.9 m/s, with a mean of 12.5 m/s. Threshold velocity showed clear seasonal variations in the following sequence: spring (11.7 m/s) < autumn (12.7 m/s) < summer (13.6 m/s). Affected by soil conditions, aeolian sand transport was weak, with an average annual aeolian sand that transported across a section (1.0 m × 2.0 m) of less than 6.0 kg.  相似文献   

7.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

8.
This paper presents the first chironomid‐inferred mean July air temperature reconstruction for the Late‐glacial in Britain. The reconstruction suggests that the thermal maximum occurred early in the interstadial, with temperatures reaching about 12°C. There was then a gradual downward trend to about 11°C, punctuated by four distinct cold oscillations of varying intensity. At the beginning of the Younger Dryas, mean July temperatures fell to about 7.5°C but gradually increased to about 9°C before a rapid rise at the onset of the Holocene. The chironomid‐inferred temperature curve agrees closely, both in general trends and in detail, with the GRIP ice‐core oxygen‐isotope curve. The reconstructed temperatures are 2–4°C lower than coleopteran‐inferred temperatures but are closer to those inferred from plant macrofossils and glacial equilibrium‐line altitudes during the Younger Dryas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

10.
Kjellström, E., Brandefelt, J., Näslund, J.‐O., Smith, B., Strandberg, G., Voelker, A. H. L. & Wohlfarth, B. 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 10.1111/j.1502‐3885.2010.00143.x. ISSN 0300‐9483. State‐of‐the‐art climate models were used to simulate climate conditions in Europe during Greenland Stadial (GS) 12 at 44 ka BP. The models employed for these simulations were: (i) a fully coupled atmosphere–ocean global climate model (AOGCM), and (ii) a regional atmospheric climate model (RCM) to dynamically downscale results from the global model for a more detailed investigation of European climate conditions. The vegetation was simulated off‐line by a dynamic vegetation model forced by the climate from the RCM. The resulting vegetation was then compared with the a priori vegetation used in the first simulation. In a subsequent step, the RCM was rerun to yield a new climate more consistent with the simulated vegetation. Forcing conditions included orbital forcing, land–sea distribution, ice‐sheet configuration, and atmospheric greenhouse gas concentrations representative for 44 ka BP. The results show a cold climate on the global scale, with global annual mean surface temperatures 5 °C colder than the modern climate. This is still significantly warmer than temperatures derived from the same model system for the Last Glacial Maximum (LGM). Regional, northern European climate is much colder than today, but still significantly warmer than during the LGM. Comparisons between the simulated climate and proxy‐based sea‐surface temperature reconstructions show that the results are in broad agreement, albeit with a possible cold bias in parts of the North Atlantic in summer. Given a prescribed restricted Marine Isotope Stage 3 ice‐sheet configuration, with large ice‐free regions in Sweden and Finland, the AOGCM and RCM model simulations produce a cold and dry climate in line with the restricted ice‐sheet configuration during GS 12. The simulated temperature climate, with prescribed ice‐free conditions in south‐central Fennoscandia, is favourable for the development of permafrost, but does not allow local ice‐sheet formation as all snow melts during summer.  相似文献   

11.
Archaeological investigations undertaken along a proposed highway together with the compilation of available geological and pedological data made it possible to give a first overview of the distribution of Pleistocene aeolian deposits in south‐west France. A chronological framework for deposition has been obtained using both radiocarbon (n = 24) and luminescence (n = 26) dating. It shows that aeolian transport was very active during the Late Pleniglacial, between 15 and ~23 ka, leading to sand emplacement over a 13 000‐m2 area at the centre of the basin. The Pleniglacial coversands are typified by extensive fields of small transverse to barchanoid ridges giving way to sandsheets to the east. Subsequent aeolian phases, at ca. 12 ka (Younger Dryas) and 0.8–0.2 ka (Little Ice Age), correspond to the formation of more localized and higher, mainly parabolic dunes. At the southern and eastern margins of the coversand area, aeolian dust accumulated to form loess deposits, the thickness of which reaches ~3 m on the plateaus. Luminescence dates together with interglacial‐ranking palaeoluvisols between the loess units clearly indicate that these accumulations built up during the last two glacial–interglacial cycles. The chronology of sand and loess deposition thus appears to be consistent with that already documented for northern Europe. This suggests that it was driven by global climate changes in the northern hemisphere. The relatively thin aeolian deposits (and particularly loess) in south‐west France is thought to reflect both a supply‐limited system and a moister climate than in more northern and continental regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Radiocarbon‐dated palaeontological remains and bedding features suggests that climatic changes in the northern Taklimakan Desert since the beginning of the Holocene can be divided into four stages: (i) 12 000–10 000 BP, a cool–to temperate–dry climate resulting in apparent alluvial–fluvial and weak aeolian activities; (ii) 10 000–8000 BP, a dry cold climate, resulting in large‐scale sand dune activity under regional desert expansion; (iii) 8000–3000 BP dry, warm climate, with a decreased area of shifting sand and the fixation of many sand dunes; (iv) 3000 BP to present, rising aeolian activity resulting in sandstorms, under the combined influence of climatic warming and excessive exploitation of land and water resources. Holocene deposits from profiles in the Northern Taklimakan Desert consist mainly of fine‐grained aeolian sand and silty clay. The fine aeolian sand was formed from re‐sorting of aeolian sand during the cold period of the Holocene, while the silty clay was formed by flood deposition in the Holocene warm period. The desert and desert steppe arboreal species and high CaCO3 content of the warm period strata suggest that the Holocene climate in the area, although generally dry, varied between warm/dry and cold/dry, and, especially in recent times, has become increasingly dry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents a multi‐proxy record from Lake Kotokel in the Baikal region at decadal‐to‐multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000‐year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, cold steppe associations typical for northern Mongolia, and mountain tundra vegetation. The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase (c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid‐based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice‐cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity.  相似文献   

14.
On the basis of the data of glacier mass balance during 1946?C2005 over Svalbard, Northern Scandinavia, and Southern Norway, the characteristics of glacier mass-balance are analyzed, and its sensitivity to climate change is calculated using a simple degree-day model. The mass balance of glaciers in these three regions reached maximum or comparatively high values in the late 1980s or the early 1990s. After that there was an accelerating negative tendency. A glacier with more positive mass balance has a higher sensitivity to equilibrium-line altitude (or climate) change and vice versa. On average, the mass loss during the entire period in these three regions was equivalent to the result of an air temperature rise of 0.32°C relative to zero net balance state. The highest temperature increase is found in Svalbard, and is 0.55°C; however, a rise of only 0.12°C is found in Southern Norway. The net balance sensitivity to a hypothetical air temperature increase of +1°C ranges from ?0.31 to ?1.03?m?w.e.?a?1, and the net balance sensitivity to an assumed increase in snow precipitation of +10% varies from +0.05 to +0.37?m?w.e.?a?1; thus, a 31% increase in snow precipitation is needed to compensate for the net mass loss induced by an air temperature increase of +1°C. The summer balance sensitivity to a hypothetical air temperature increase of +1°C varies from ?0.39 to ?0.95?m?w.e.?a?1, and the winter balance sensitivity to an assumed increase in snow precipitation of +10% ranges from +0.02 to +0.38?m?w.e.?a?1. This study confirms early findings that maritime glaciers have comparatively higher mass balance sensitivity than continental glaciers.  相似文献   

15.
Quartz–garnet oxygen isotope thermometry of quartz‐rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700–800 °C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record Δ18O(Qtz–Grt) = 2.68 ± 0.21‰ (1 s.d. , n = 15), corresponding to peak metamorphic conditions of 734 ± 38 °C. This agrees well with the estimates from garnet–biotite exchange thermometry. Similar temperature estimates are obtained from Swede Pond (682 ± 47 °C, n = 3) and King's Station (c. 700 °C). The Whitehall area records higher temperatures (798 ± 25 °C, n = 3). All of these temperatures are higher than previous regional temperature estimates. The c. 800 °C temperatures near Whitehall are consistent with preservation of pre‐granulite contact temperatures adjacent to anorthosite. The preservation of peak metamorphic temperatures in garnet of all sizes is consistent with slow oxygen diffusion in garnet, and closure temperatures of at least 730 °C. Peak metamorphic fractionations are preserved in rocks with varying quartz:feldspar ratios, indicating that the modal percentage of feldspar does not affect retrograde oxygen exchange in these rocks. The lack of this correlation suggests slow rates of oxygen diffusion in quartz and feldspar, consistent with the results of anhydrous oxygen diffusion experiments.  相似文献   

16.
We performed deformation experiments on a foliated mylonite under high temperature and pressure conditions in this study. To investigate the effect of pre‐existing fabric on the rheology of rocks, our samples were drilled from natural mylonite with the cylinder axis parallel to the foliation (PAR) and perpendicular to the foliation (PER). We performed 25 tests on seven PAR samples and 21 tests on seven PER samples at temperatures ranging from 600 to 890 °C, confining pressures ranging from 800 to 1400 MPa, and steady‐state strain rates of 1 × 10−4, 1 × 10−5 and 2.5 × 10−6 s−1. In the temperatures of 600–700 °C, the deformation is accommodated by semi‐brittle flow, with the average stress exponent being 6–7 assuming power law flow; in the temperature range of 800–890 °C, deformation is mainly by plastic flow, with an average stress exponent of n = 3 and activation energies of Q = 354 ± 52 kJ/mol (PER and PAR samples). The experimental results show that the strengths of PER samples are higher than those of PAR samples. Deformation microstructures have been studied by optical and electron microscopy. The original foliation of PER samples is destroyed by deformation and replaced by a new foliation, but the deformation of PAR samples followed the original foliation. Electron backscatter diffraction (EBSD) measurements show a strong lattice preferred orientation (LPO) of the quartz c axis fabrics of the starting samples and deformed PER and PAR samples. However, the c axis fabric of quartz in experimentally deformed PER and PAR samples varied with temperature and strain rate is different from that seen in the starting mylonite sample. The initial quartz c axis fabric of the starting mylonite sample has been transformed into a new fabric during experimental deformation. Dehydration melting of biotite and hornblende occurred in both PER and PAR samples at temperatures of 800–890 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Oxygen isotope compositions of phosphate in tooth enamel from large mammals (i.e. horse and red deer) were measured to quantify past mean annual air temperatures and seasonal variations between 145 ka and 33 ka in eastern France. The method is based on interdependent relationships between the δ18O of apatite phosphate, environmental waters and air temperatures. Horse (Equus caballus germanicus) and red deer (Cervus elaphus) remains have δ18O values that range from 14.2‰ to 17.2‰, indicating mean air temperatures between 7°C and 13°C. Oxygen isotope time series obtained from two of the six horse teeth show a sinusoidal-like signal that could have been forced by temperature variations of seasonal origin. Intra-tooth oxygen isotope variations reveal that at 145 ka, winters were colder (? 7 ± 2°C) than at present (3 ± 1°C) while summer temperatures were similar. Winter temperatures mark a well-developed West–East thermal gradient in France of about ? 9°C, much stronger than the ?4°C difference recorded presently. Negative winter temperatures were likely responsible for the extent and duration of the snow cover, thus limiting the food resources available for large ungulates with repercussions for Neanderthal predators.  相似文献   

18.
We combine structural observations, petrological data and 40Ar–39Ar ages for a stack of amphibolite facies metasedimentary units that rims high‐P (HP) granulite facies felsic bodies exposed in the southern Bohemian Massif. The partly migmatitic Varied and Monotonous units, and the underlying Kaplice unit, show a continuity of structures that are also observed in the adjacent Blanský les HP granulite body. They all exhibit an earlier NE?SW striking and steeply NW‐dipping foliation (S3), which is transposed into a moderately NW‐dipping foliation (S4). In both the Varied and Monotonous units, the S3 and S4 foliations are characterized by a Sil–Bt–Pl–Kfs–Qtz–Ilm±Grt assemblage, with occurrences of post‐D4 andalusite, cordierite and muscovite. In the Monotonous unit, minute inclusions of garnet, kyanite, sillimanite and biotite are additionally found in plagioclase from a probable leucosome parallel to S3. The Kaplice unit shows rare staurolite and kyanite relicts, a Sil–Ms–Bt–Pl–Qtz±Grt assemblage associated with S3, retrogressed garnet?staurolite aggregates during the development of S4, and post‐D4 andalusite, cordierite and secondary muscovite. Mineral equilibria modelling for representative samples indicates that the Varied unit records conditions higher than ~7 kbar at 725 °C during the transition from S3 to S4, followed by a P?T decrease from ~5.5 kbar/750 °C to ~4.5 kbar/700 °C. The Monotonous unit shows evidence of partial melting in the S3 fabric at P?T above ~8 kbar at 740–830 °C and a subsequent P?T decrease to 4.5–5 kbar/700 °C. The Kaplice unit preserves an initial medium‐P prograde path associated with the development of S3 reaching peak P?T of ~6.5 kbar/640 °C. The subsequent retrograde path records 4.5 kbar/660 °C during the development of S4. 40Ar–39Ar geochronology shows that amphibole and biotite ages cluster at c. 340 Ma close to the HP granulite, whereas adjacent metasedimentary rocks preserve c. 340 Ma amphibole ages, but biotite and muscovite ages range between c. 318 and c. 300 Ma. The P?T conditions associated with S3 imply an overturned section of the orogenic middle crust. The shared structural evolution indicates that all mid‐crustal units are involved in the large‐scale folding cored by HP granulites. The retrograde PT paths associated with S4 are interpreted as a result of a ductile thinning of the orogenic crust at a mid‐crustal level. The 40Ar–39Ar ages overlap with U–Pb zircon ages in and around the HP granulite bodies, suggesting a short duration for the ductile thinning event. The post‐ductile thinning late‐orogenic emplacement of the South Bohemian plutonic complex is responsible for a re‐heating of the stacked units, reopening of argon system in mica and a tilting of the S4 foliation to its present‐day orientation.  相似文献   

19.
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows:△tL=QL×△tcol/(TM-TC)×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt, Cp specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (Tc), QL latent heat of the granite melt.
The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated -210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of -190,000 years, which implies that the actual cooling period within the temperature range of 900°-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.  相似文献   

20.
Annually resolved June–July–August (JJA) temperatures from ca. 570 BC to AD 120 (±100 a; approximately 690 varve years) were quantified from biogenic silica and chironomids (Type II regression; Standard Major Axis calibration‐in‐time) preserved in the varved sediments of Lake Silvaplana, Switzerland. Using 30 a (climatology) moving averages and detrended standard deviations (mean–variability change, MVC), moving linear trends, change points and wavelets, reconstructed temperatures were partitioned into a warmer (+0.3°C; ca. 570–351 BC), cooler (?0.2°C; ca. 350–16 BC) and moderate period (+0.1°C; ca. 15 BC to AD 120) relative to the reconstruction average (10.9°C; reference AD 1950–2000 = 9.8°C). Warm and variable JJA temperatures at the Late Iron Age–Roman Period transition (approximately 50 BC to AD 100 in this region) and a cold anomaly around 470 BC (Early–Late Iron Age) were inferred. Inter‐annual and decadal temperature variability was greater from ca. 570 BC to AD 120 than the last millennium, whereas multi‐decadal and lower‐frequency temperature variability were comparable, as evident in wavelet plots. Using MVC plots of reconstructed JJA temperatures from ca. 570 BC to AD 120, we verified current trends and European climate model outputs for the 21st century, which suggest increased inter‐annual summer temperature variability and extremes in a generally warmer climate (heteroscedasticity; hotspot of variability). We compared these results to MVC plots of instrumental and reconstructed temperatures (from the same sediment core and proxies but a different study) from AD 1177 to AD 2000. Our reconstructed JJA temperatures from ca. 570 BC to AD 120 showed that inter‐annual JJA temperature variability increased rapidly above a threshold of ~10°C mean JJA temperature. This increase accelerated with continued warming up to >11.5°C. We suggest that the Roman Period serves with respect to inter‐annual variability as an analogue for warmer 21st‐century JJA temperatures in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号