首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quartz c axis fabrics and microstructures have been investigated within a suite of quartzites collected from the Loch Eriboll area of the Moine Thrust zone and are used to interpret the detailed processes involved in fabric evolution. The intensity of quartz c axis fabrics is directly proportional to the calculated strain magnitude. A correlation is also established between the pattern of c axis fabrics and the calculated strain symmetry.Two kinematic domains are recognized within one of the studied thrust sheets which outcrops immediately beneath the Moine Thrust. Within the upper and central levels of the thrust sheet coaxial deformation is indicated by conjugate, mutually interfering shear bands, globular low strain detrital quartz grains whose c axes are aligned sub-parallel to the principal finite shortening direction (Z) and quartz c axis fabrics which are symmetric (both in terms of skeletal outline and intensity distribution) with respect to mylonitic foliation and lineation. Non-coaxial deformation is indicated within the more intensely deformed and recrystallized quartzites located near the base of the thrust sheet by single sets of shear bands and c axis fabrics which are asymmetric with respect to foliation and lineation.Tectonic models offering possible explanations for the presence of kinematic (strain path) domains within thrust sheets are considered.  相似文献   

2.
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ° to 24 °. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( Wn) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the deformation of the two units is broadly synchronous and the deformation in both the units is transpressional.  相似文献   

3.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   

4.
A characteristic domainal configuration is reported for both micro-structures and c-axis fabrics in the Cap de Creus pure quartz mylonites as displayed in 50 samples from the centres of different shear zones. Three types of domains are found a, b and c. Each domain has a distinct c-axis orientation pattern. These three fabric elements, also labelled a, b and c make up the total fabric. c-axis fabrics are symmetric or asymmetric with respect to the main mylonitic foliation depending on the presence or absence of the b domain and its fabric element. The boundaries of the domains are parallel to the main mylonitic foliation. Two domain types, a and b display an internal foliation defined by preferred grain boundary alignment parallel to the direction of optical orientation within the domain. The internal foliations are oblique to the main mylonitic foliation in two different senses giving the sample a herring-bone appearance. These internal foliations are shown to be related to extensional crenulations. Domains are not produced by host-controlled recrystallization. The fabric elements and corresponding domains are the expression of kinematic heterogeneities on the scale of the thin section.  相似文献   

5.
Samples of monomineralic quartz veins from the Simplon Fault Zone in southwest Switzerland and north Italy generally have asymmetric, single girdle c-axis patterns similar to textures measured from many other regions. Several samples have characteristically different textures, however, with a strong single c-axis maximum near the intermediate specimen axis Y (the direction within the foliation perpendicular to the lineation X) and a tendency for the other crystal directions to be weakly constrained in their orientation about this dominant c-axis maximum. This results in ‘streaked’ pole figure patterns, with an axis of rotation parallel to the c-axis maximum. These atypical samples also have a distinctive optical microstructure, with advanced recrystallization and grain growth resulting in a strong shape fabric (SB) oblique to the dominant regional foliation (SA), whereas typical samples have a strong SA fabric outlined by very elongate, only partially recrystallized, ribbon grains. The recrystallized grains of the atypical samples are themselves deformed and show strong undulose extinction and a core-mantle recrystallization structure. The streaked texture is likely to be a direct consequence of lattice bending and kinking during heterogeneous slip on the favoured first-order prism (10 0) (a) system, the heterogeneity itself being due to problems in maintaining coherence across grain boundaries when insufficient independent easy-slip systems are available for homogeneous strain by dislocation glide. Such bending would be particularly prevalent in very elongate, thin ribbon grains, resulting in high internal strain energy and promoting recrystallization. Thus both the texture and the microstructure could be significantly modified by later strain increments affecting quartz grains with an already developed, nearly single-crystal texture.  相似文献   

6.
In a Barrovian metamorphic sequence, garnetiferous mica schists document a heterogeneously developed superposition of sub‐orthogonal fabrics and multiple garnet growth episodes. In the variably deformed domains, four types of garnet porphyroblasts have been defined based on inclusion trail patterns. Modelled garnet zoning in the MnNCKFMASHTO system indicates a prograde evolution from 4–4.5 kbar and 490–510 °C to 5–6 kbar and 520–550 °C in the earliest subhorizontal fabric progressing towards 6.5–7.5 kbar and 560–590 °C in the subsequent subvertical foliation. This fabric is heterogeneously deformed into a shallow‐dipping retrograde foliation associated with garnet resorption. In situ electron backscatter diffraction measurements of ilmenite inclusions in individual garnet grains yield precise data on included planar and linear elements. Consistent orientations of internal foliations, lineations and foliation intersection axis sets indicate a superposition of three sub‐orthogonal foliation systems. Weak variations of internal records with increasing intensity of deformation suggest that a moderate buckling stage occurred, but apparent lack of porphyroblast rotation is interpreted as a result of dominant passive flow. Coupling the orientation of internal fabric sets with P–T estimates is used to complement the tectono‐metamorphic evolution of the thickened crust. We demonstrate that garnet porphyroblasts preserve features which reflect large‐scale tectonic processes in orogens.  相似文献   

7.
Quartz microfabrics and associated microstructures have been studied on a crustal shear zone—the Main Central Thrust (MCT) of the Himalaya. Sampling has been done along six traverses across the MCT zone in the Kumaun and Garhwal sectors of the Indian Himalaya. The MCT is a moderately north-dipping shear zone formed as a result of the southward emplacement of a part of the deeply rooted crust (that now constitutes the Central Crystalline Zone of the Higher Himalaya) over the less metamorphosed sedimentary belt of the Lesser Himalaya. On the basis of quartz c- and a-axis fabric patterns, supported by the relevant microstructures within the MCT zone, two major kinematic domains have been distinguished. A noncoaxial deformation domain is indicated by the intensely deformed rocks in the vicinity of the MCT plane. This domain includes ductilely deformed and fine-grained mylonitic rocks which contain a strong stretching lineation and are composed of low-grade mineral assemblages (muscovite, chlorite and quartz). These rocks are characterized by highly asymmetric structures/microstructures and quartz c- and a-axis fabrics that indicate a top-to-the-south sense that is compatible with south-directed thrusting for the MCT zone. An apparently coaxial deformation domain, on the other hand, is indicated by the rocks occurring in a rather narrow belt fringing, and structurally above, the noncoaxial deformation domain. The rocks are highly feldspathic and coarse-grained gneisses and do not possess any common lineation trend and the effects of simple shear deformation are weak. The quartz c-axis fabrics are symmetrical with respect to foliation and lineation. Moreover, these rocks contain conjugate and mutually interfering shear bands, feldspar/quartz porphyroclasts with long axes parallel to the macrosopic foliation and the related structures/microstructures, suggesting deformation under an approximate coaxial strain path.On moving towards the MCT, the quartz c- and a-axis fabrics become progressively stronger. The c-axis fabric gradually changes from random to orthorhombic and then to monoclinic. In addition, the coaxial strain path gradually changes to the noncoaxial strain path. All this progressive evolution of quartz fabrics suggests more activation of the basal, rhomb and a slip systems at all structural levels across the MCT.  相似文献   

8.
The Canisp Shear Zone transects layered Lewisian gneisses near Lochinver, NW Scotland. It is a vertical ductile shear zone with a dextral shear sense, formed during Laxfordian amphibolite facies metamorphism, transposing the layering to new foliation and linear structures. Minerals in the layered gneisses show little or no shape fabric, while a strong shape fabric defines the foliation. For quartz, this shape fabric is accompanied by development of a preferred crystal orientation with fabric patterns reflecting the geometry of the shear deformation. The quartz fabric shows a pole-free area around the lineation with the c-axes concentrated in an asymmetric cross-girdle or a point maximum perpendicular to the shear plane, and a monoclinic symmetry consistent with the shear sense.  相似文献   

9.
The Pikikiruna Schist of Nelson, New Zealand, displays a fabric in which the patterns of quartz c-axes, the poles to planes of inequidimensional quartz grains, and the statistical maxima of poles to sheet-silicate cleavages are oblique to each other. The quartz c-axes patterns consist of type-1 and type-2 crossed-girdles. The triclinic fabric can be explained in terms of one complex rotational deformation of an essentially plane strain nature. Rotation of approximately 90° about the intermediate strain-axis was combined at a late stage with subsidiary rotations about the extension axis. The quartz c-axes patterns can be related to the kinematic framework rather than the finite strain-axes. On the other hand, the dimensional quartz preferred orientation may be closely related to the finite strain-axes, though the quantity of strain can not be measured because of recrystallisation.  相似文献   

10.
《Tectonophysics》2003,361(3-4):171-186
Banded iron formation (BIF) from the Quadrilátero Ferrı́fero (southeastern Brazil) shows a compositional layering with alternating iron-rich and quartz-rich layers. This layering was intensively folded and transposed at a centimeter/millimeter scale through a component of bedding-parallel shear related to flexural slip at middle to high greenschist facies conditions (400–450 °C). The microstructure and c-axis fabrics of normal limbs, inverted limb and hinge zones of a selected isoclinal fold were analyzed combining optical and scanning electron microscopy (SEM) and digital image analysis. In the normal limbs, recrystallized quartz grains show undulose extinction, relatively dry grain boundaries, c-axes at high angle to foliation and a pervasive grain shape fabric (GSF) indicating operation of crystal-plastic processes. In the inverted limb, quartz grains show more serrated and porous (“wet”) grain boundaries; the GSF is similar to that of the normal limb, but c-axes are oriented at 90° to those of the normal limb. We interpreted these characteristics as reflecting operation of solution-precipitation deformation in inverted limbs, as a consequence of grains having been rotated to an orientation that was hard to basal 〈a〉 glide, but easy to dissolution-precipitation creep. This deformation partitioning between crystal-plasticity and solution-transfer during folding/transposition of quartz may explain the common occurrence of layered quartz rocks, where individual layers show alternating c-axis fabrics with opposite asymmetries but a consistent GSF orientation. Such characteristics may reflect an earlier event of pervasive folding/transposition of a preexisting layering.  相似文献   

11.
There is a large ductile shear zone, 2 km wide and more than 3SO km long, in the South Qilian Mountains, western China. It is composed of volcanic, granitic and calcareous mylonites. The microstructures of the ductile shear zone show nearly E-W extending subvertical foliation, horizontal and oblique stretching lineations, shearing sense from sinis-tral to oblique sinistral strike-slip from east to west, "A" type folds and abundant granitic veins. Measured lattice preferred orientations (LPOs) of the mylonitic and recrystallized quartz of the granitic mylonite in the west segment suggest a strong LPO characterized by the dominant slip systems {1010} formed at high temperature (>650℃). K-feldspar of the mylonite shows an 39Ar/40Ar high-temperature plateau age of 243.3±1.3 Ma, and biotite, 250.5±0.5 Ma, which represent the formation age of the ductile shear zone. The 39Ar/40Ar plateau ages of 169.7±0.3 Ma and 160.6±0.1 Ma and the 39Ar/40Ar isochron ages of 166.99±2.37 Ma and 160.6±0.1 Ma of biot  相似文献   

12.
Syntectonic plutons emplaced in shallow crust often contain intermediate-to low-temperature deformation microstructures but lack a high-temperature, subsolidus deformation fabric, although the relict magmatic fabric is preserved. The Proterozoic Vellaturu granite emplaced at the eastern margin of the northern Nallamalai fold belt, south India during the late phase of regional deformation has a common occurrence of intermediate-to low-temperature deformation fabric, superimposed over magmatic fabric with an internally complex pattern. But high-T subsolidus deformation microstructure and fabric are absent in this pluton. The main crystal plastic deformation and fluid enhanced reaction softening was concentrated along the margin of the granite body. Resulting granite mylonites show Y-maximum c-axis fabric in completely recrystallized quartz ribbonds, dynamic recrystallization of perthites, and myrmekite indicative of fabric development under intermediate temperature (∼ 500–400°C). The weakly-deformed interior shows myrmekite, feldspar microfracturing and limited bulging recrystallization of quartz. The abundance of prism subgrain boundaries is indicative of continuing deformation through low-temperature (∼ 300°C). The relative rates of cooling influenced by advective heat transfer and deformation of the pluton seem to control the overall subsolidus fabric development. The rapid advective heat transfer from the interior in the early stages of subsolidus cooling was followed by slow cooling through intermediate temperature window as a well-developed phyllosilicate rich mylonitic skin around the granite body slowed down conductive heat loss. Low-T crystal plastic deformation of quartz was effected at a late stage of cooling and deformation of the shallow crustal granite body emplaced within the greenschist facies Nallamlai rocks.  相似文献   

13.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

14.
《Geodinamica Acta》1998,11(6):271-283
The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10−5 S.I. and 28 to 75 · 10−5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.  相似文献   

15.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   

16.
通过野外观察、室内显微构造分析和磁组构测量方法,在桂北四堡地区浅变质地层中厘定出一条NE30°走向,南东倾,倾角约40°的大型左旋斜冲韧性剪切带——四堡韧性剪切带;该韧性剪切带内发育糜棱岩系列、糜棱面理、拉伸线理、A型褶皱、S-C组构、亚颗粒、显微分层及石英条带等宏观和微观构造特征;磁各向异性度测量结果显示四堡韧性剪切带由一宽约4 km的强应变带及边缘弱带组成,全带宽达10 km,长度超30 km;在对韧性剪切带运动学、构造年代学研究的基础上,结合区域地质资料,认为四堡韧性剪切带是华南加里东晚期华夏地块由南东向北西作低角度斜冲到扬子地块的产物。这一发现揭示了扬子地块与华夏地块碰撞拼合的方式,为深化华南构造演化提供了新资料。  相似文献   

17.
The Vårdalsneset eclogite situated in the Western Gneiss Region, SW Norway, is a well preserved tectonite giving information about the deformation regimes active in the lower crust during crustal thickening and subsequent exhumation. The eclogite constitutes layers and lenses variably retrograded to amphibolite and is composed of garnet and omphacite with varying amounts of barroisite, actinolite, clinozoisite, kyanite, quartz, paragonite, phengite and rutile. The rocks record a five‐stage evolution connected to Caledonian burial and subsequent exhumation. (1) A prograde evolution through amphibolite facies (T =490±63 °C) is inferred from garnet cores with amphibole inclusions and bell‐shaped Mn profile. (2) Formation of L>S‐tectonite eclogite (T =680±20 °C, P=16±2 kbar) related to the subduction of continental crust during the Caledonian orogeny. Lack of asymmetrical fabrics and orientation of eclogite facies extensional veins indicate that the deformation regime during formation of the L>S fabric was coaxial. (3) Formation of sub‐horizontal eclogite facies foliation in which the finite stretching direction had changed by approximately 90°. Disruption of eclogite lenses and layers between symmetric shear zones characterizes the dominantly coaxial deformation regime of stage 3. Locally occurring mylonitic eclogites (T =690±20 °C, P=15±1.5 kbar) with top‐W kinematics may indicate, however, that non‐coaxial deformation was also active at eclogite facies conditions. (4) Development of a widespread regional amphibolite facies foliation (T =564±44 °C, P<10.3–8.1 kbar), quartz veins and development of conjugate shear zones indicate that coaxial vertical shortening and sub‐horizontal stretching were active during exhumation from eclogite to amphibolite facies conditions. (5) Amphibolite facies mylonites mainly formed under non‐coaxial top‐W movement are related to large‐scale movement on the extensional detachments active during the late‐orogenic extension of the Caledonides. The structural and metamorphic evolution of the Vårdalsneset eclogite and related areas support the exhumation model, including an extensional detachment in the upper crust and overall coaxial deformation in the lower crust.  相似文献   

18.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

19.
MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).  相似文献   

20.
周建勋 《地质科学》1999,34(1):10-17
商丹糜棱岩带岩湾、沙沟和商南等3个区段石英C-轴组构和显微构造特征表明,该带自西向东石英C-轴组构形式由单一环带型转为Y-轴方向的点极密型,然后变为Ⅰ型交叉环带型,构造变形环境从低绿片岩相过渡到中-高绿片岩相,然后变为高绿片岩相-低角闪岩相。构造变形环境差异是造成石英组构形式变化的主要因素。随着温压条件的升高,石英滑移系从以底面〈a〉滑移系和柱面〈a〉滑移系的共同作用为主转向以单一柱面〈a〉滑移系为主,进而底面〈a〉滑移系和柱面〈a〉滑移系又重新变得活跃,且菱面滑移系的作用也变得十分重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号