首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have investigated the evolution of an active silicic magma-feedingsystem beneath Usu volcano, Japan, where eight eruptions havebeen recorded since AD 1663. All magmatic products contain similartypes of plagioclase and orthopyroxene phenocrysts that consistof homogeneous cores with uniform compositions, and a zonedmantle that increases in size with time. The compositions ofplagioclase and orthopyroxene phenocrysts vary gradually andregularly with time, as do the bulk-rock compositions. The textureof these phenocrysts also changes systematically, caused byprogressive crystal growth, dissolution and diffusion. On thebasis of these observations, we conclude that the same magma-feedingsystem has persisted at Usu volcano since AD 1663. Compositionalvariation of magnetite phenocrysts differs from that of plagioclaseand orthopyroxene, because magnetite has large diffusion coefficientsand should represent magmatic conditions immediately beforethe eruption. Most pumices from Usu volcano contain two typesof magnetite phenocryst, each with a different composition andcrystallization temperature, indicating that two magmas mixedbefore each eruption (approximately several days before). Theend-members changed with time: rhyolite + basaltic andesite(1663); dacite ± rhyolite (1769, 1822, 1853); dacite± dacite (1977, 2000). The temperature of the magma apparentlyincreases with time, and the increase can be explained by sequentialtapping from a magma chamber with a thermal and chemical gradientin addition to injection of high-temperature magma. KEY WORDS: continuous existence of magma chamber; dacite; dissolution and diffusion of phenocrysts; magma mixing; magnetite  相似文献   

2.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

3.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   

4.
Alcedo volcano is one of six shield volcanoes on Isabela Islandin the western Galpagos Islands. Although Alcedo is dominantiybasaltic, it is unusual in that it also has erupted 1 km3 ofrhyolite. The rhyolitic phase marked a 10-fold decrease in themass-eruption rate of the volcano, and the volcano has returnedto erupting basalt. The basalts are tholeiitic and range fromstrongly to sparsely porphyritic. Olivine and plagiodase arethe liquidus phases in the most primitive basalts. The MgO andNi concentrations in the most primitive basalts indicate thatthey have undergone substantial differentiation since extractionfrom the mantle. The rhyolites contain the assemblage oligoclase-augite-titanomagnetite-fayalite-apatiteand sparse xenoliths of quenched basalt and cumulate gabbros.Intermediate rocks are very rare, but some are apparently basaltrhyolitehybrids, and others resulted from differentiation of tholeiiticmagma. Several modeling approaches and Sr-, Nd-, and O-isotopicdata indicate that the rhyolites resulted from 90% fractionation(by weight) of plagiodase, augite, titanomagnetite, olivine,and apatite from the most primitive olivine tholeiite. The dataare inconsistent with the rhyolites originating by crustal anatexis.The extreme Daly gap may be caused by the large increase inviscosity as the basaltic magma differentiates to intermediateand siliceous compositions; highly evolved magmas are eruptibleonly after they become saturated with volatiles by second boiling.The close association of the hybrid intermediate magmas andmagmatic inclusions with the climactic plinian eruption indicatesmixing between mafic and silicic magmas immediately before eruption.Rhyolite production was favored by the decrease in supply ofbasaltic magma as Alcedo was carried away from the focus ofthe Galpagos hotspot. A three-stage model for the magmaticevolution of a Galpagos volcano is proposed. In the first stage,the supply of basaltic magma is large. Basaltic magma continuallyintrudes the subcaldera magma chamber, buffering the magmas'compositional and thermal evolution. As the volcano is carriedaway from the basaltic source, the magma chamber is allowedto cool and differentiate, as exemplified by Alcedo's rhyoliticphase. Finally, the volcano receives even smaller influx ofbasalt, so a large magma chamber cannot be sustained, and thevolcano shifts to isolated basaltic eruptions. KEY WORDS: Galpagos; oceanic rhyolites; fractional crystallization; Isabela Island *Corresponding author, e-mail: Geist{at}IDUI1.csrv.uidaho.edu. Telephone: 208-885-6491. Fax: 208-885-5724  相似文献   

5.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

6.
A detailed study of the pyroclastic deposits of the AD 79 ‘Pompei’Plinian eruption of Vesuvius has allowed: (1) reconstructionof the thermal, compositional and isotopic (87Sr/86Sr) pre-eruptivelayering of the shallow magma chamber; (2) quantitative definitionof the syn-eruptive mixing between the different magmas occupyingthe chamber, and its relationships with eruption dynamics; (3)recognition of the variability of mafic magma batches supplyingthe chamber. During the different phases of the eruption 25–30%of the magma was ejected as white K-phonolitic pumice, and 70–75%as grey K-tephri-phonolitic pumice. The white pumice resultsfrom the tapping of progressively deeper magma from a body (T= 850–900%C) consisting of two distinct layers mainlyformed by crystal fractionation. The grey pumice results fromsyn-eruptive mixing involving three main end-members: the phonolitic‘white’ magmas (salic end-member, SEM), mafic cumulates(cumulate end-member, CEM) and a crystal-poor ‘grey’phono-tephritic magma (mafic end-member, MEM), which was nevererupted without first being mixed with ‘white’ magma.Evidence is provided that mixing occurred within the chamberand was characterized by a transition with time from physicalmixing at a microscopic scale to chemical hybridization. TheMEM magma had a homogeneous composition and constant 87Sr86Srisotopic ratio, possibly as a result of sustained convection.No unambiguous liquidus phases were found, suggesting that theMEM magma was superheated (T = 1000–1100C); its verylow viscosity was a main cause in the establishment of a physicaldiscontinuity separating the white and the grey magmas. Thewhite-grey boundary layer possibly consisted of a multiply diffusiveinterface, periodically broken and recreated, supplying thephonolitic body through mixing of moderate amounts of fractionatedgrey melts with the overlying white magma. The presence of alarge overheated mass indicates the young, growing stage ofthe AD 79 chamber, whose main engine was the periodic arrivalof hot mafic magma batches. These were characterized by K-tephriticto K-basanitic compositions, high temperatures (>1150C),high volatile contents (20–25% H2O +Cl+F+S), low viscosities[(1+2 102 poises)] and relatively low densities (2500–2600kg/m3). The birth of the Pompei chamber followed the repeatedarrival of these batches (on average characterized by 87Sr/86Sr070729)into a reservoir containing a tephriticphonolitic, crystal-enriched,magma, a residue from the preceding ‘Avellino’ Plinianeruption (3400 BP).In fact, about half of magma ejected duringthe AD 79 eruption could have been inherited from pre-Avellinotimes. KEY WORDS: Vesuvius; magma chamber; magma mixing; compositional layering phonolites; magma supply; potassic magmas *Correponding author  相似文献   

7.
Young (<65 ka) explosive silicic volcanism at Taupo volcano,New Zealand, has involved the development and evacuation ofseveral crustal magmatic systems. Up to and including the 26·5ka 530 km3 Oruanui eruption, magmatic systems were contemporaneousbut geographically separated. Subsequently they have been separatedin time and have vented from geographically overlapping areas.Single-crystal (secondary ionization mass spectrometry) andmultiple-crystal (thermal ionization mass spectrometry) zirconmodel-age data are presented from nine representative eruptiondeposits from 45 to 3·5 ka. Zircon yields vary by threeorders of magnitude, correlating with the degrees of zirconsaturation in the magmas, and influencing the spectra of modelages. Two adjacent magma systems active up to 26·5 kashow wholly contrasting model-age spectra. The smaller systemshows a simple unimodal distribution. The larger system, usingdata from three eruptions, shows bimodal model-age spectra.An older 100 ka peak is interpreted to represent zircons (antecrysts)derived from older silicic mush or plutonic rocks, and a youngerpeak to represent zircons (phenocrysts) that grew in the magmabody immediately prior to eruption. Post-26·5 ka magmabatches show contrasting age spectra, consistent with a mixtureof antecrysts, phenocrysts and, in two examples, xenocrystsfrom Quaternary plutonic and Mesozoic–Palaeozoic metasedimentaryrocks. The model-age spectra, coupled with zircon-dissolutionmodelling, highlight contrasts between short-term silicic magmageneration at Taupo, by bulk remobilization of crystal mushand assimilation of metasediment and/or silicic plutonic basementrocks, and the longer-term processes of fractionation from crustallycontaminated mafic melts. Contrasts between adjacent or successivemagma systems are attributed to differences in positions ofthe source and root zones within contrasting domains in thequartzo-feldspathic (<15 km deep) crust below the volcano. KEY WORDS: zircon; U-series dating; rhyolite; Taupo Volcanic Zone; Taupo volcano  相似文献   

8.
Aniakchak caldera, Alaska, produced a compositionally heterogeneousignimbrite 3400 years ago, which changes from rhyodacitic atthe base to andesitic at the top of the eruptive sequence. Interpretationsof compositionally heterogeneous ignimbrites typically includeeither in situ fractional crystallization of mafic magma andgeneration of a stratified magma body or replenishment of asilicic magma chamber by mafic inputs. Another possibility,silicic replenishment of a more mafic chamber, exists. Geochemicalcharacteristics of the caldera-forming rhyodacite and severallate pre-caldera rhyodacites indicate independent origins foreach, within a maximum of 5000 years prior to caldera formation.Isotopic considerations preclude derivation of the caldera-formingrhyodacite from the caldera-forming andesite. However, the caldera-formingrhyodacite can be explained as the residual liquid of a mostlycrystallized basalt, with addition of crustal material. TheAniakchak andesite probably formed in a shallow chamber by successivemixing events involving small volumes of basalt and rhyodacite,together with contamination. The pre-caldera rhyodacites representerupted portions of intruding silicic magma, whereas anotherportion homogenized with the resident mafic magma. The caldera-formingevent reflects a large influx of rhyodacite, which erupted beforesignificant mixing occurred and also triggered draining of muchof the andesitic magma from the chamber. KEY WORDS: Aniakchak; caldera-forming eruption; geochemistry; ignimbrite; silicic replenishment  相似文献   

9.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

10.
Editorial          下载免费PDF全文
The Rattlesnake Tuff of eastern Oregon comprises >99% ofhigh-silica rhyolite glass shards and pumices representing 280km3 of magma. Glassy, crystal-poor, high-silica rhyolite pumicesand glass shards cluster in five chemical groups that rangein color from white to dark gray with increasing Fe concentration.Compositional clusters are defined by Fe, Ti, LREE, Ba, Eu,Rb, Zr, Hf, Ta, and Th. Progressive changes with increasingdegree of evolution of the magma occur in modal mineralogy,mineral composition, and partition coefficients. Partition coefficientsare reported for alkali feldspar, clinopyroxene, and titanomagnetite.Models of modal crystal fractionation, assimilation, successivepartial melting, and mixing of end members cannot account forthe chemical variations among rhyolite compositions. On theother hand, 50% fractionation of observed phenocryst compositionsin non-modal proportions agrees with chemical variations amongrhyolite compositions. Such non-modal fractionation might occuralong the roof and margins of a magma chamber and would yieldcompositions of removed solids ranging from syenitic to granitic.A differentiation sequence is proposed by which each more evolvedcomposition is derived from the previous, less evolved liquidby fractionation and accumulation, occurring mainly along theroof of a slab-like magma chamber. As a layer of derivativemagma reaches a critical thickness, a new layer is formed, generatinga compositionally and density stratified magma chamber. KEY WORDS: high-silica rhyolite; partition coefficients; differentiation; zoned ash-flow tuff; layered convection  相似文献   

11.
Pre-eruption processes are investigated for magmas erupted in1983 from Miyake-jima volcano, which is one of the most activevolcanoes in Japan. The whole-rock compositional trends of theeruptive products are principally smooth and linear. Magmaserupted from some fissures have compositions that deviate fromthe main linear trend. Phenocryst contents of samples displacedfrom the linear compositional trends are significantly lowerthan those of samples on the main trends. Anorthite-rich plagioclasephenocrysts, present throughout the 1983 products, are too calcicto have crystallized from the erupted magma composition, andwere derived from a basaltic magma through magma mixing. Althoughthe linear whole-rock composition trends favor simple two-componentmagma mixing, this cannot explain the presence of samples thatdeviate from the main trend. Instead, the observed compositiontrends were formed by mixing of a homogeneous basaltic magmawith andesitic magmas exhibiting compositional diversity. Theoriginal linear composition trends of the andesitic end-membermagma were rotated and shifted to the direction of the basalticend-member magma by magma mixing. The samples out of the maintrends represent magmas with less basaltic component than thoseon the trend. The density and viscosity of the basaltic end-membermagma were comparable with those of the andesitic end-membermagmas. The basaltic magma, discharged from one magma chamberat 2 kbar pressure, was injected into a magma chamber at lowerpressure occupied by the chemically zoned andesite magma (1kbar), and possibly as a fountain. To establish the characteristicmixing trend of the 1983 magma, the basaltic component musthave been distributed systematically in the zoned andesite magma.A requirement is that the basaltic magma spread laterally andmixed with the andesite magma at various levels of ascent ofthe fountain in the host andesite magma. Analysis of compositionalzoning in titanomagnetite crystals revealed that the eruptionof the 1983 magmas was initiated soon after the replenishmentof the basaltic magma in the 1 kbar magma chamber. KEY WORDS: compositional trend; liquid–liquid blending; magma chamber; magma mixing; Miyake-jima Volcano  相似文献   

12.
The Sete Cidades volcano (São Miguel, Azores) is situatedat the eastern end of the ultraslow spreading Terceira riftaxis. The volcano comprises several dominantly basaltic pre-calderaeruptions, a trachytic caldera-forming stage and a post-calderastage consisting of alternating trachytic and basaltic eruptions.The post-caldera flank lavas are more primitive (>5 wt %MgO) than the pre-caldera lavas, implying extended fractionalcrystallization and longer crustal residence times for the pre-caldera,shield-building lavas. Thermobarometric estimates show thatthe ascending alkali basaltic magmas stagnated and crystallizedat the crust–mantle boundary (15 km depth), whereas themore evolved magmas mainly fractionated in the upper crust (3km depth). The caldera-forming eruption was triggered by a basalticinjection into a shallow trachytic magma chamber. Lavas fromall stages follow a single, continuous liquid line of descentfrom alkali basalt to trachyte, although slight differencesin incompatible element (e.g. Ba/Nb, La/Nb) and Sr isotope ratiosimply some heterogeneity of the mantle source. Major and traceelement data suggest similar partial melting processes throughoutthe evolution of the volcano. Slight geochemical differencesbetween post- and pre-caldera stage lavas from the Sete Cidadesvolcanic system indicate a variation in the mantle source compositionwith time. The oxygen fugacity increased from the pre-calderato the post-caldera stage lavas, probably as a result of theassimilation of crustal rocks; this is supported by the presenceof crustal xenoliths in the lavas of the flank vents. The lavasfrom the Sete Cidades volcano generally have low Sr isotoperatios; however, rocks from one post-caldera vent on the westernflank indicate mixing with magmas resembling the lavas fromthe neighbouring Agua de Pau volcano, having higher Sr isotoperatios. The different magma sources at Sete Cidades and theadjacent Agua de Pau volcano imply that, despite their closeproximity, there is only limited interaction between them. KEY WORDS: crystallization depth; fractionation; stratigraphy; Terceira rift; volcanic stages  相似文献   

13.
Mount Galunggung is a historically active volcano in southwesternJava that has erupted four times in the last two centuries.During the most recent event, which occurred during a 9–monthinterval in 1982– 83, some 305 106 m3 of medium–K,calc–alkaline magma was erupted. This eruption was unusualbecause of its duration, the diversity of eruption dynamicsand products, and the range of lava compositions produced. Thecomposition of juvenile material changed gradually during thecourse of the eruption from initial plagioclase (An60–75)and two–pyrozene bearing andesites with 58% SiO2 to finalplagioclase (An85–90), diopside, and olivine (Fo85–90)bearing primitive magnesium basalts with 47% SiO2 Mineralogicaland compositional relationships indicate a magmatic evolutioninvolving differentitation of high–Mg parental melt. Theeruptive volumes of 35 106 m3 andesite, 120 106 m3 maficandesite, and 150 106 m3 basalt are consistent with the ideathat the 1982– 83 eruption progressively tapped and draineda magma chamber that had become chemically stratified throughextensive crystal fractionation. Separates of plagioclase and pyroxene have 18O( SMO W) rangesof + 5. 6 to + 6.0 and + 5.3 to + 5.6, respectively, with 18Oplag–pxvalues of + 0.4 to + 0.6o, indicating internal O–isotopeequiliburium at temperature of 1100–850 C. The magenesianbasalts have magmatic 18O/ 16O ratios similar to those of mid–oceanridge basalt, and the O–isotope ratios of compositionallyevolved derivative melts show no evidence for contaminationof the galunggung magmas by 18O–rich crust during differentiation.Andesites and transitional mafic and sites have a more variableO–isotope character, with laves and phenocrysts havingboth higher and lower 18O values than observed in the parentalmagnesium basalts. These features are interpreted to reflectintramagma chamber processes affecting the upper portions ofthe differentiating Galunggung magma body before the 1982–83eruption.  相似文献   

14.
We present mineralogical, petrological and geochemical datato constrain the origin of the Harzburg mafic–ultramaficintrusion. The intrusion is composed mainly of mafic rocks rangingfrom gabbronorite to quartz diorite. Ultramafic rocks are veryrare in surface outcrops. Dunite is observed only in deepersections of the Flora I drill core. Microgranitic (fine-grainedquartz-feldspathic) veins found in the mafic and ultramaficrocks result from contamination of the ultramafic magmas bycrustal melts. In ultramafic and mafic compositions cumulatetextures are widespread and filter pressing phenomena are obvious.The order of crystallization is olivine pargasite, phlogopite,spinel plagioclase, orthopyroxene plagioclase, clinopyroxene.Hydrous minerals such as phlogopite and pargasite are essentialconstituents of the ultramafic cumulates. The most primitiveolivine composition is Fo89·5 with 0·4 wt % NiO,which indicates that the olivine may have been in equilibriumwith primitive mantle melts. Coexisting melt compositions estimatedfrom this olivine have mg-number = 71. The chemical varietyof the rocks constituting the intrusion and the mg-number ofthe most primitive melt allow an estimation of the approximatecomposition of the mantle-derived primary magma. The geochemicalcharacteristics of the estimated magma are similar to thoseof an island-arc tholeiite, characterized by low TiO2 and alkalisand high Al2O3. Geochemical and Pb, Sr and Nd isotope data demonstratethat even the most primitive rocks have assimilated crustalmaterial. The decoupling of Sr from Nd in some samples demonstratesthe influence of a fluid that transported radiogenic Sr. Leadof crustal origin from two isotopically distinct reservoirsdominates the Pb of all samples. The ultramafic rocks and thecumulates best reflect the initial isotopic and geochemicalsignature of the parent magma. Magma that crystallized in theupper part of the chamber was more strongly affected by assimilatedmaterial. Petrographic, geochemical and isotope evidence demonstratesthat during a late stage of crystallization, hybrid rocks formedthrough the mechanical mixing of early cumulates and melts withstrong crustal contamination from the upper levels of the magmachamber. KEY WORDS: Harzburg mafic–ultramafic intrusion; Sr–Nd–Pb isotopes; magma evolution; crustal contamination  相似文献   

15.
The Violet Town Volcanics (Lachlan Fold Belt, Australia) arean S-type ignimbrite suite containing microgranitoid enclaves,basaltic andesite enclaves and enclaves of high-silica rhyolite.The microgranitoid enclaves are similar to those in peraluminousgranites. They typically have lower initial 87Sr/86Sr and higherNd than the host, and represent globules of a mafic, mantle-derivedmagma, which was hybridized by mixing and diffusional exchangewith the host magma. The basaltic andesite enclaves were incorporatedinto the ignimbrite as xenoliths, but their parental magma mayhave been similar to that of the microgranitoid enclaves. Theyare isotopically less depleted than other mantle-derived rocksfrom the Lachlan Fold Belt, reflecting contamination by crustalmaterial, or derivation from less depleted mantle sources. Thehigh-silica rhyolite enclaves, previously interpreted to berelated to the ignimbrite by crystal fractionation, have Ndvalues up to 3 units higher than their host, and cannot be relatedto their host by crystal fractionation or assimilation-fractionalcrystallization (AFC) processes. The coexistence of S-type magmasand mantle-derived magmas suggests that the latter may haveplayed a role in the Palaeozoic magmatism of the Lachlan FoldBelt, acting as a heat source for melting and perhaps also contributingchemical components to the crustally derived magmas. KEY WORDS: enclaves; magma mingling; magma mixing; S-type *Present address: Department of Geology and Geophysics, University of Adelaide, Adelaide, S.A. 5005, Australia. Telephone: +-61-8-3035973. Fax: +-61-8-3034347. e-mail: melburg{at}geology.adelaide.edu.au  相似文献   

16.
The island of Pantelleria consists of trachytes, pantelleritesand minor mildly alkaline basalts. Rocks of intermediate composition(falling in the so-called ‘Daly Gap’) such as mugearites,benmoreites and mafic trachytes occur only in the form of enclavesin trachytes and pantellerites inside the main caldera of theisland (Caldera ‘Cinque Denti’), which collapsedduring the ‘Green Tuff’ ignimbrite eruption at 50ka. The enclaves include volcanic, subvolcanic and intrusiverock types. The enclaves in host trachyte contain traces ofglass; devitrified glass occurs within enclaves in host pantellerites.Minerals in the enclaves show regular compositional variationswith whole-rock silica content. Glass present in the medium-grainedsamples is interpreted to be the result of incipient melting.The major and trace element compositions of the enclaves showregular and linear variations between an evolved mafic magma(hawaiite) and a felsic end-member similar to the ‘GreenTuff’ trachyte. Fractional crystallization modelling ofcompatible and incompatible trace elements (V, Ni, Zr, La, Sm,Lu, Nb, Y, Th) does not reproduce the observed trends. Rocksof intermediate composition within the ‘Daly Gap’can be explained only by magma mixing between an already differentiatedmafic magma (hawaiite) and an anorthoclase-rich trachytic meltin the lower and higher parts, respectively, of a stratifiedmagmatic chamber. Medium-grained enclaves are interpreted asthe result of fragmentation of solidified mixing layers in theroof of the magma chamber during the eruption of the ‘GreenTuff’, when the collapse of the caldera took place. Diffusioncalculations suggest a residence time of <5 days for theenclaves in their host magmas. KEY WORDS: Daly Gap; enclaves; magma mixing; Pantelleria  相似文献   

17.
Phenocrysts in porphyritic volcanic rocks may originate in avariety of ways in addition to nucleation and growth in thematrix in which they are found. Porphyritic rhyodacite lavasthat underlie the eastern half of Mount Mazama, the High Cascadeandesite/dacite volcano that contains Crater Lake caldera, containevidence that bears on the general problem of phenocryst origin.Phenocrysts in these lavas apparently formed by crystallizationnear the margins of a magma chamber and were admixed into convectingmagma before eruption. About 20 km3 of pre-Mazama rhyodacite magma erupted during arelatively short period between400 and 500 ka; exposed pre-Mazamadacites are older and less voluminous. The rhyodacites formedas many as 40 lava domes and flows that can be assigned to threeeruptive groups on the basis of composition and phenocryst content.Phenocryst abundance decreases (from 32 to 8 vol.%) and SiO2content increases (from 68 to 73 wt.%) in the apparent orderof eruption. Phenocrysts (plagioclase, orthopyroxene, augite,and Fe-Ti oxides) are commonly fragmental or form polycrystallineaggregates with interstitial glass. Discrete phenocrysts withcomplete euhedral outlines are rare except for small elongatedcrystals. The abundance of discrete phenocrysts increases withthat of aggregates. The grain-size of minerals in the aggregatescovers the range of discrete phenocrysts (0.2–4.2 mm).Rim compositions of phenocrysts and the range of chemical zoningare almost uniform among the three rhyodacite groups, regardlessof whether crystals are discrete or in aggregates. However,a small fraction of phenocrysts, especially small elongatedcrystals, have different compositions: plagioclase with Fe-richcores and augite with Wo-poor cores, both of which are characteristicof crystals in undercooled andesite enclaves in the rhyodacites.The majority of phenocrysts were derived by disintegration ofpolycrystalline aggregates; rare, small phenocrysts crystallizedin andesitic magma similar to that represented by the andesiteenclaves. The modal and chemical compositions of the rhyodacites can beexplained by different degrees of admixing of crystals, representedby the aggregates, into magma having 4 vol.% ‘true’phenocrysts, mainly plagioclase. The aggregates may be partsof the rind formed by in situ crystallization near the walland roof of the magma chamber. The rind was disrupted duringor just before eruption, and pieces were variably disaggregatedand incorporated into erupting magma. The amount of rind incorporateddeclined during the sequence of eruptions. Owing to vesiculationof interstitial liquid and shearing during flow, crystals inthe aggregates were separated and became phenocrysts. Pre-Mazamarhyodacite was erupted dominantly as lava, as opposed to thecompositionally similar rhyodacite pumice of the Holocene caldera-formingeruption of Mount Mazama, apparently because its source chamberwas crystallizing inward rather than actively growing.  相似文献   

18.
The Rotoiti eruption from the Taupo Volcanic Zone (TVZ) in northernNew Zealand produced voluminous pyroclastic deposits. The ferromagnesianmineral assemblage in these dominantly consists of cummingtonite+ hornblende + orthopyroxene with uniform magnesium/iron ratios;a second assemblage of biotite + hornblende + orthopyroxene,also with uniform Fe/Mg ratios, appears midway through the eruptionsequence and, thereafter, increases in abundance. These contrastingmineral assemblages, together with pumice clast and groundmassglass compositions, provide evidence for mingling of two discretemagmas. Similarities in the chemical characteristics of thetwo magmas suggest that they developed from a similar source.The eruption initially tapped relatively homogeneous magma thatwas erupted throughout most of this phase of activity. The middlestages of the eruption included some mixed magma. The finalstages of the eruption were dominated by a second magma composition,which was probably injected into the bottom of the main magmabody as the eruption proceeded. The source that fed the eruptionwas complex, and discrete magma bodies existed and evolved separatelyprior to the eruption. We conclude that eruptions in the TVZare fed from a diffuse upper-crustal zone of partially interconnected,and at times physically separate, magma bodies rather than fromcentralized and necessarily large long-lived magma chambers. KEY WORDS: Taupo Volcanic Zone; Okataina Volcanic Centre; Rotoiti eruption; rhyolite system; magma mixing  相似文献   

19.
Rhyolite pumices and co-erupted granophyric (granite) xenolithsyield evidence for rapid magma generation and crystallizationprior to their eruption at 15·2 ± 2·9 kaat the Alid volcanic center in the Danikil Depression, Eritrea.Whole-rock U and Th isotopic analyses show 230Th excesses upto 50% in basalts <10 000 years old from the surroundingOss lava fields. The 15 ka rhyolites also have 30–40%230Th excesses. Similarity in U–Th disequilibrium, andin Sr, Nd, and Pb isotopic values, implies that the rhyolitesare mostly differentiated from the local basaltic magma. Giventhe (230Th/232Th) ratio of the young basalts, and presumablythe underlying mantle, the (230Th/232Th) ratio of the rhyolitesupon eruption could be generated by in situ decay in about 50000 years. Limited (5%) assimilation of old crust would hastenthe lowering of (230Th/232Th) and allow the process to takeplace in as little as 30 000 years. Final crystallization ofthe Alid granophyre occurred rapidly and at shallow depths at20–25 ka, as confirmed by analyses of mineral separatesand ion microprobe data on individual zircons. Evidently, 30000–50 000 years were required for extraction of basaltfrom its mantle source region, subsequent crystallization andmelt extraction to form silicic magmas, and final crystallizationof the shallow intrusion. The granophyre was then ejected duringeruption of the comagmatic rhyolites. KEY WORDS: U-series; zircon; ion microprobe; volcano; geochronology  相似文献   

20.
天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨   总被引:16,自引:14,他引:16  
根据岩浆演化和地球物理深部探测,天池火山之下存在地壳和地幔双层岩浆房。地幔玄武质岩浆向地壳岩浆房的补给,保持了天池火山逾百万年持续不断的喷发活动。本文从天池火山千年大喷发浮岩中的玄武质粗安岩一粗安岩角砾和条带状岩浆的岩相学、矿物学和岩石化学研究,提出地幔的粗面玄武质岩浆向地壳岩浆房的注入,触发千年大喷发,初步探讨了天池火山千年大喷发的岩浆混合作用与喷发机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号