首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
韶关市年和月最大日降水量多年一遇的极值计算   总被引:11,自引:11,他引:0  
用皮尔逊-III型分布分别对韶关市年和月最大日降水量两种变量进行拟合,进而计算了它们在不同重现期下的极值。结果表明:韶关市50年一遇的估算年最大日降水量是220.5 mm,100年一遇是244.1 mm。实况表明,韶关在1956~2006年间出现的最大日降水量是234.8 mm,与韶关50年一遇估算的日降水量相吻合;韶关平均2.2年出现一次100 mm以上的日降水量,而该降水量的估算重现期是2年,亦十分接近;总体上拟合良好,对其不同重现期下的极值估计结果可信。对月最大日降水量的拟合以3月的拟合误差最小,5~7月10年一遇以上的日降水量均超过100 mm,说明这3个月较其他月份容易出现大暴雨,尤其6月份所有重现期的最大日降水量均为其它月份之最,5月和7月次之。  相似文献   

2.
年最大日雨量极值分布拟合与推算   总被引:2,自引:0,他引:2  
尹文有  郑皎  王继红  程林 《气象科技》2011,39(2):137-140
采用红河州12个站近48~58年的年最大日雨量资料,用PearsonⅢ型分布、耿贝尔分布、对数正态分布等3种概率分布模型分别进行了拟合,选择拟合最好的分布模型来估算最大给定重现期极值.结果表明:3种分布均能较好地拟合年最大日雨量的分布,在红河州12个站的拟合中,有7个站用耿贝尔分布,4个站用Pearson-Ⅲ分布,1个...  相似文献   

3.
利用新会降水资料,用皮尔逊一Ⅲ型分布分别对新会年最大日降水量和1~12月的月最大日降水量进行拟合,进而计算了它们在不同重现期下的极值。结果表明:新会50a一遇的估算年最大日降水量是308mm,100a一遇是335mm。新会4~9月5a一遇的最大日降水量接近或超过100mm,说明汛期各月比较容易出现大暴雨。除7月外,4~9月新会50年一遇的日降水量均超过200mm。经检验,除了2月和12月外,年和各月最大日降水量通过0.05显著水平检验,拟合效果良好,对其不同重现期下的极值估计结果可信。  相似文献   

4.
用Pearson-Ⅲ概率分布推算重现期年最大日雨量   总被引:4,自引:1,他引:4       下载免费PDF全文
林两位  王莉萍 《气象科技》2005,33(4):314-317
许多工程的设计需依据给定重现期的降水极值,概率推算是其中一种重要的方法。Pearson—Ⅲ型曲线常用于拟合降水频数分布,该文简要介绍了用Pearson—Ⅲ型概率分布推算重现期年最大日雨量的基本方法。采用漳州市10个测站1961~2003年最大日雨量资料,计算给定重现期的最大日雨量。运用常见的办公软件Excel 2000的函数计算功能,构造Pearson—Ⅲ概率分布函数公式,实现软件的快捷计算。初步结果为:在全市10个站的拟合中,有7个站拟合效果较好,3个站拟合效果较差。文中就提高Pearson—Ⅲ概率分布计算精度方面进行了讨论。  相似文献   

5.
用Jenkinson法推算山东年最大日雨量重现期值的初探   总被引:8,自引:0,他引:8       下载免费PDF全文
该文简要介绍用Jenkinson法计算山东地区的年最大日雨量不同的重现期值,得到初步结果:13个台拟合较佳,3个台拟合较差。笔者认为要得到较为符合实际的结果,除了要继续探讨应用其它统计理论分布来求算年最大日雨量重现期值外,还应考虑与物理因子放大法结合起来互为修正。  相似文献   

6.
2021年8月22日勉县遭遇极端降水事件,日降水量高达2379 mm,灾害十分严重。统计分析1959—2021年勉县历史逐年最大日降水量特点,采用皮尔逊Ⅲ型(简称P-Ⅲ型)曲线分布和耿贝尔极值分布方法推算重现期及降水量,并将两者进行比较,对2021年8月22日极端大暴雨进行重现期估算。结果表明:勉县年最大日降水年际变化明显,2008年以来变率增大且有更极端的趋势;基于P-Ⅲ型曲线分布和耿贝尔极值分布的1959—2020年最大日降水积累概率拟合效果均较好,但耿贝尔极值分布对年最大日降水量的拟合优于P-Ⅲ型分布;应用耿贝尔极值分布推算勉县极值降水,100 a一遇的日降水量为1547 mm,2021年8月22日降水量2379 mm的重现期为4 88133 a。增加2021年最大日降水量进入样本序列重新构建耿贝尔极值分布函数,推算日降水量2379 mm的重现期为70735 a,100 a一遇的估算降水量为1834 mm,重现期及降水量估算变化均较大,说明超极端降水和样本长度对重现期的推算影响较大。  相似文献   

7.
贵州年降水量和年最大月降水量多年一遇的极值计算   总被引:1,自引:0,他引:1  
根据贵州省84个气象站1961-2007年的月降水资料,用耿贝尔极值I型分布分别对贵州省年降水量和年最大月降水量2种变量进行拟合,进而计算它们在不同重现期下的极值.结果表明:贵州省的降水量集中分布在东南部地区,其中贵州的安顺及黔东南地区降水量较为突出,晴隆15、30、50a一遇的年最大月、年降水量分别为559.8mm、617.1mm、658.9mm和2 019.6mm、2 177.9mm、2 293.2mm,都匀15、30、50a一遇的年最大月、年降水量分别为557mm、626.6mm、677.3mm和1 892.8mm、2 044.9mm、2 155.8mm,对拟合结果的评判采用相对均方根误差进行检验,其年降水量平均相对均方根误差为6%,年最大月降水量平均相对均方根误差为9%,可见拟合良好,对其不同重现期下的极值估计结果可信.  相似文献   

8.
本文简要介绍Gu mbel分布及其具体应用,并用其计算了山东地市驻地气象台站年最大日雨量重现期值,得到初步结果,30年一遇日最大降水量计算值,13个台站拟合较佳,3个台站拟合较差。并计算了40年、100年和200年重现期的年最大日降水量。用物理因子放大法求算24小时可能最大降水值却偏大。笔者认为,要得到较为符合实际的结果,除了要继续探讨应用其它统计理论分布求算年最大日雨量重现期值外,还要考虑与物理因子放大法结合起来,互为修正。  相似文献   

9.
选取最优概率分布函数有助于提高气象要素重现期极值计算的可靠性。基于广州气象站1908—2016年逐日降水资料,构建年最大日降水量序列,采用线性趋势分析方法,研究了广州市年最大日降水量的变化特征,选取皮尔逊-Ⅲ型、对数正态、指数和耿贝尔-Ⅰ分布4种分布函数拟合广州市年最大日降水量序列,并按ω2检验、似然比检验等方法进行拟合优度检验。结果表明,近56年来,广州市年最大日降水量呈不显著的增加趋势。4—9月日最大降水量出现次数较多,6个月的出现次数占全年的93. 6%,其中,前汛期出现次数大于后汛期的。对数正态分布确定为广州市年最大日降水量拟合最优分布函数。对数正态分布估算的广州市50 a一遇的年最大日降水量是240. 1 mm,100 a一遇的是266. 1 mm,150 a一遇估算的是281. 4 mm。观测资料表明,广州平均1. 8 a出现一次150 mm以上的日降水量,而该降水量的估算重现期是1. 9 a,相当吻合。  相似文献   

10.
Pearson—III型概率分布曲线能用来拟合不同时段降水量的分布,进而求得一定重现期下的降水量极值,该文采用该方法分别对贵阳市年雨量、年最大月和日降水量3种变量进行拟合。结果表明,Pearson—III型概率分布能较好拟合贵阳地区的暴雨频数分布,拟合效果良好,估算结果可信。  相似文献   

11.
Compared with daily rainfall amount, hourly rainfall rate represents rainfall intensity and the rainfall process more accurately, and thus is more suitable for studies of extreme rainfall events. The distribution functions of annual maximum hourly rainfall amount at 321 stations in China are quantified by the Generalized Extreme Value(GEV) distribution, and the threshold values of hourly rainfall intensity for 5-yr return period are estimated. The spatial distributions of the threshold exhibit significant regional diferences, with low values in northwestern China and high values in northern China, the mid and lower reaches of the Yangtze River valley, the coastal areas of southern China, and the Sichuan basin. The duration and seasonality of the extreme precipitation with 5-yr return periods are further analyzed. The average duration of extreme precipitation events exceeds 12 h in the coastal regions, Yangtze River valley, and eastern slope of the Tibetan Plateau. The duration in northern China is relatively short. The extreme precipitation events develop more rapidly in mountain regions with large elevation diferences than those in the plain areas. There are records of extreme precipitation in as early as April in southern China while extreme rainfall in northern China will not occur until late June. At most stations in China, the latest extreme precipitation happens in August–September. The extreme rainfall later than October can be found only at a small portion of stations in the coastal regions, the southern end of the Asian continent, and the southern part of southwestern China.  相似文献   

12.
从小时尺度考察中国中东部极端降水的持续性和季节特征   总被引:7,自引:1,他引:6  
李建  宇如聪  孙蟩 《气象学报》2013,71(4):652-659
相对于日降水量,小时尺度降水资料可以更准确地反映降水强度并描述降水过程,因而更适用于极端降水阈值确定及其特性研究.利用广义极值分布估计中国321个站最大小时降水量的分布函数,确定了5a重现期的小时降水强度阈值.阈值的空间分布呈现出明显的地域差异,西北地区阈值偏低,华北地区、长江中下游地区、华南沿海地区和四川盆地西部地区为高阈值中心.取各站5a一遇极端降水事件对其持续性特征和季节特征进行分析,发现在沿海地区、长江流域和青藏高原东坡极端降水事件的平均持续时间较长(超过12h);中国北部地区持续时间较短.在具有较大海拔落差的复杂地形区,极端降水事件较平原地区更快地发展到峰值.华南地区4月就可有极端降水事件出现,而中国北方地区要到6月底才出现极端降水;全中国大部分地区的年最晚极端降水在8-9月,但沿海地区、大陆南端和西南地区南部的少数站点在10月以后仍有极端降水发生.  相似文献   

13.
Based on hourly rainfall observational data from 442 stations during 1960–2014, a regional frequency analysis of the annual maxima(AM) sub-daily rainfall series(1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast(NE1, NE2), Central(C), Central North(CN1, CN2), Central East(CE1, CE2, CE3), Southeast(SE1, SE2, SE3, SE4), and Southwest(SW).The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80–270 mm(1-h to 24-h rainfall) and 108–390 mm(1-h to 24-h rainfall) for 20- and 100 yr, respectively.Minimum return levels were in the CN1 and NE1 regions, with values of 37–104 mm and 53–140 mm for 20 and 100 yr,respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1–24-h rainfall varied from-3–4 mm to-23–11 mm(-10%–10%) for 20-yr events, reaching-6–26 mm(-10%–30%) and-10–133 mm(-10%–90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.  相似文献   

14.

The extreme daily precipitation in Serbia was examined at 16 stations during the period 1961–2014. Two synoptic situations in May and September of 2014 were analysed, when extreme precipitation was recorded in western and eastern Serbia, respectively. The synoptic situation from 14 to 16 May 2014 remained nearly stationary over the western and central Serbia for the entire period. On 15 May 2014, the daily rainfall broke previous historical records in Belgrade (109.8 mm), Valjevo (108.2 mm) and Loznica (110 mm). Precipitation exceeded 200 mm in 72 h, producing the most catastrophic floods in the recent history of Serbia. In Negotin (eastern Serbia), daily precipitation of 161.3 mm was registered on 16 September 2014, which was the maximum value recorded during the period 1961–2014. The daily maximum in 2014 was registered at 6 out of 16 stations. The total annual precipitation for 2014 was the highest for the period 1961–2014 at almost all stations in Serbia. A non-significant positive trend was found for all precipitation indices: annual daily maximum precipitation, the total precipitation in consecutive 3 and 5 days, the total annual precipitation, and number of days with at least 10 and 20 mm of precipitation. The generalised extreme value distribution was fitted to the annual daily maximum precipitation. The estimated 100-year return levels were 123.4 and 147.4 mm for the annual daily maximum precipitation in Belgrade and Negotin, respectively.

  相似文献   

15.
浑太流域降水极值的统计分布特征   总被引:2,自引:0,他引:2  
基于浑太流域1966-2006年73个雨量站的日降水资料,建立了逐站年最大日降水量(AnnualMaximum,AM)序列和汛期4-9月日降水量<1.27mm.d-1的最长持续干旱天数(Munger Index,MI)序列,并对其时空分布规律进行了分析。采用广义极值(General Extreme Value,GEV)分布、广义帕雷托(General Pareto,GP)分布、韦布尔(Weibull,WB)分布、约翰逊SB(Jonhson SB,J-SB)分布、Burr分布和对数逻辑(Log-Logistic,L-LG)分布等6种极值分布函数对AM和MI序列进行了逐站分布拟合,结果表明,广泛应用的GEV分布整体拟合程度最好,有50个测站的KS检验统计量Dn<0.09,而未曾推广使用的Burr分布的拟合效果也非常好,有36个测站Dn<0.09。用GEV分布对50年一遇的AM和MI进行了估算,发现流域中心地区极端强降水和极端干旱的程度较高,分别为>208mm.d-1和>47d。  相似文献   

16.
江淮地区极端降水特征及其变化趋势的研究   总被引:3,自引:1,他引:2  
利用1961~2011年江淮地区5~9月无缺测的71站逐日降水资料,做基于POT(Peaks-Over-Threshold)的广义Pareto分布(GPD),研究江淮地区极端降水的分布特征及其变化趋势。结果表明:(1)皖赣交界处阈值最大,西北和东南部较小,且江淮大部分地区阈值的线性趋势系数为正,其中湖北东部和江西北部的站点,趋势达0.8 mm(10 a)-1以上,并通过了显著性水平0.01的MK(Mann-Kendall)检验。(2)江淮地区中东部多存在连续性极端降水,因此文中采用基于极值指数的自动分串技术获得近似独立的极值样本。(3)尺度参数大值区位于江淮南部,西北、东南以及淮河以北较小,且线性趋势系数在大部分地区均表现为正值,表明出现降水极大值的概率增加。(4)皖赣鄂交界处是极端降水发生概率大值区,而西北、东南及安徽中部地区较小,且极端降水在大部分地区有增加的趋势,特别是在大别山附近及河南东部,2年和20年重现水平的趋势分别达6 mm(10 a)-1和20 mm(10 a)-1以上。  相似文献   

17.
利用化州1959年以来的降水资料,对化州暴雨气候变化特征进行分析,在此基础上,研究极端降水的重现期,以期为化州市洪涝灾害的防范和风险管理提供一定的参考数据。统计分析表明,化州年暴雨日数与年雨量之间相关性较好,连续性暴雨多发生在龙舟水以及台风影响期间;暴雨日数、年暴雨量变化趋势显著;暴雨日数1964年发生了突变;暴雨日数、暴雨量存在11年的主要准周期;计算重现期,化州50a一遇的最大日降水量为395.2mm,100a一遇的最大日降水量为451.2mm。  相似文献   

18.
The possible changes in the frequency of extreme rainfall events in Hong Kong in the 21st century wereinvestigated by statistically downscaling 30 sets of the daily global climate model projections (involvinga combination of 12 models and 3 greenhouse gas emission scenarios,namely,A2,A1B,and B1) of theFourth Assessment Report of the Intergovernmental Panel on Climate Change.To cater for the intermittentand skewed character of the daily rainfall,multiple stepwise logistic regression and multiple stepwise linearregression were employed to develop the downscaling models for predicting rainfall occurrence and rainfallamount,respectively.Verification of the simulation of the 1971-2000 climate reveals that the models ingeneral have an acceptable skill in reproducing past statistics of extreme rainfall events in Hong Kong.Theprojection results suggest that,in the 21st century,the annual number of rain days in Hong Kong is expectedto decrease while the daily rainfall intensity will increase,concurrent with the expected increase in annualrainfall.Based on the multi-model scenario ensemble mean,the annual number of rain day is expected todrop from 104 days in 1980-1999 to about 77 days in 2090-2099.For extreme rainfall events,about 90% ofthe model-scenario combinations indicate an increase in the annual number of days with daily rainfall 100mm (R100) towards the end of the 21st century.The mean number of R100 is expected to increase from 3.5days in 1980-1999 to about 5.3 days in 2090-2099.The projected changes in other extreme rainfall indicesalso suggest that the rainfall in Hong Kong in the 21st century may also become more extreme with moreuneven distributions of wet and dry periods.While most of the model-emission scenarios in general projectconsistent trends in the change of rainfall extremes in the 21st century,there is a large divergence in theprojections among different model/emission scenarios.This reflects that there are still large uncertainties inmodel simulations of future extreme rainfall events.  相似文献   

19.
This study was conducted using daily precipitation records gathered at 37 meteorological stations in northern Xinjiang, China, from 1961 to 2010. We used the extreme value theory model, generalized extreme value (GEV) and generalized Pareto distribution (GPD), statistical distribution function to fit outputs of precipitation extremes with different return periods to estimate risks of precipitation extremes and diagnose aridity–humidity environmental variation and corresponding spatial patterns in northern Xinjiang. Spatiotemporal patterns of daily maximum precipitation showed that aridity–humidity conditions of northern Xinjiang could be well represented by the return periods of the precipitation data. Indices of daily maximum precipitation were effective in the prediction of floods in the study area. By analyzing future projections of daily maximum precipitation (2, 5, 10, 30, 50, and 100 years), we conclude that the flood risk will gradually increase in northern Xinjiang. GEV extreme value modeling yielded the best results, proving to be extremely valuable. Through example analysis for extreme precipitation models, the GEV statistical model was superior in terms of favorable analog extreme precipitation. The GPD model calculation results reflect annual precipitation. For most of the estimated sites’ 2 and 5-year T for precipitation levels, GPD results were slightly greater than GEV results. The study found that extreme precipitation reaching a certain limit value level will cause a flood disaster. Therefore, predicting future extreme precipitation may aid warnings of flood disaster. A suitable policy concerning effective water resource management is thus urgently required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号