首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
日本海环流研究综述   总被引:6,自引:0,他引:6  
日本海作为东北亚地区最大的边缘海,是西北太平洋上的重要海区。由于特殊的地理位置和复杂的地形,使得日本海的环流结构呈现独有特征,如日本海内的亚极地锋现象,复杂多变的涡旋,北部形成的深水团等。概述了日本海环流状况,着重介绍了对马海峡、郁陵海盆环流情形和日本海特征水团;总结了目前仍存在的争议问题,如对马暖流源头、对马暖流空间结构等;指出了目前日本海尚待解决的科学问题,如对马暖流流量的长期变化及其原因、东韩暖流消失现象及其机制、日本海特征水的传播路径及其影响因素、日本海的某些变化产生原因及其与全球变化的响应等。  相似文献   

2.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.  相似文献   

4.
本文通过二维数值模拟对1986年6月~1988年12月东海对马暖流水的来源问题进行了初步探讨,结果得出东海对马暖流水的来源基本上分为三种类型:(1)东海对马暖流水主要为东海黑潮水继续北上部分构成;(2)东海对马暖流水由东海黑潮水、东海陆架水以及东海北部黄海大陆沿岸水几部分混合而成;(3)东海对马暖流水几乎全部由东海北部的黄海大陆沿岸水构成。模拟与实测结果基本一致.  相似文献   

5.
简要介绍了黄海和东海的地理环境概况,着重分析调查海域的环流系统。有如下一些初步看法与结论。 台湾暖流的前缘混合水,可从长江冲淡水底层穿越而影响到苏北沿岸,直到32°N以北的浅水区域。对马暖流西侧的水体是东海混合水,而其东侧为黑潮分支。黄海暖流的流向在不同季节具有规律的摆动。黄海底层冷水团属于季节性水团,其强盛及消衰与温跃层的形成及消亡紧密相关。黄海底层冷水团与中部底层冷水并非每年彼此独立,它们的共同特征甚至比其差异更明显。夏季东海冷水不能借助爬升侵入黄海底层冷水团内部。在济州岛南部区域,中层的逆温、逆盐现象,是由黄海密度环流的扩散效应与东海冷水沿黄海底层冷水团边界的爬升这两个原因而形成的。  相似文献   

6.
Water, Salt, Phosphorus and Nitrogen Budgets of the Japan Sea   总被引:1,自引:0,他引:1  
Water, salt, phosphorus and nitrogen budgets of the Japan Sea have been calculated by box model analysis using historical data. Average residence time of the Tsushima Warm Current Water in the upper 200 m is 2.1 years and that of the Japan Sea Proper Water is 90 years. The salt flux from the Tsushima Strait balances those through the Tsugaru and Soya Straits. Average residence times of phosphorus and nitrogen from the Tsushima Strait are 2.2 years and 1.6 years, respectively, in the upper 200 m of the Japan Sea. Total nitrogen/total phosphorus ratios of riverine load, the Tsushima Warm Current water and the water in the Japan Sea are 16.4, 16.6 and 11.3, respectively. This suggests that denitrification is dominant in the Japan Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Seasonal Variation of the Cheju Warm Current in the Northern East China Sea   总被引:1,自引:1,他引:1  
The Cheju Warm Current has been defined as a mean current that rounds Cheju-do clockwise, transporting warm and saline water to the western coastal area of Cheju-do and into the Cheju Strait in the northern East China Sea (Lie et al., 1998). Seasonal variation of the Cheju Warm Current and its relevant hydrographic structures were examined by analyzing CTD data and trajectories of satellite-tracked drifters. Analysis of a combined data set of CTD and drifters confirms the year-round existence of the Cheju Warm Current west of Cheju-do and in the Cheju Strait, with current speeds of 5 to 40 cm/s. Saline waters transported by the Cheju Warm Current are classified Cheju Warm Current water for water of salinity greater than 34.0 psu and modified Cheju Warm Current for water having salinity of 33.5–34.0 psu. In winter, Cheju Warm Current water appears in a relatively large area west of Cheju-do, bounded by a strong thermohaline front formed in a "" shape. In summer and autumn, the Cheju Warm Current water appears only in the lower layer, retreating to the western coastal area of Cheju-do in summer and to the eastern coastal area sometimes in autumn. The Cheju Warm Current is found to flow in the western channel of the Korea/Tsushima Strait after passing through the Cheju Strait, contributing significantly to the Tsushima Warm Current.  相似文献   

8.
黄海、东海表、上层实测流分析   总被引:12,自引:3,他引:12  
根据迄今为止所获得的142套锚碇浮标和58套卫星跟踪漂流浮标的大范围测流资料,综合分析了黄海、东海表、上层环流。研究结果更加清晰、形象、直观地展示了黑潮及其向对马暖流的分支,台湾暖流的分叉,和黄海暖流、长江冲淡水及涡旋发达海区的若干主要特征。  相似文献   

9.
Using a temperature data set from 1961 to 1990, we estimated the monthly distribution of the vertically integrated heat content in the East China Sea. We then drew the monthly map of the horizontal heat transport, which is obtained as the difference between the vertically integrated heat content and the surface heat flux. We anticipate that its distribution pattern is determined mainly due to the advection by the ocean current if it exists stably in the East China Sea. The monthly map of the horizontal heat transport showed the existence of the Taiwan-Tsushima Warm Current System (TTWCS) at least from April to August. The T-S (temperature-salinity) analysis along the path of TTWCS indicated that the TTWCS changes its T-S property as it flows in the East China Sea forming the Tsushima Warm Current water. The end members of the Tsushima Warm Current water detected in this study are water masses in the Taiwan Strait and the Kuroshio surface layer, the fresh water from the mainland of China, and the southern tip of the Yellow Sea Cold Water extending in the northern part of the East China Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
本文全面地分析了此段海流的流路与流速结构,首次提出研究海域近底层的环流示意图。指出在夏季,韩国南岸和日本九州北岸均存在着一支南下的逆流,九州西岸出现两种或多种形式的流路。对马暖流在源地流速很弱,流向不稳定,流路时隐时显不明显,只有离开源地后才逐渐显示出一支海流轮廓;强流区在朝鲜海峡附近。该海流可明显地划分为三段。流速夏强冬弱,夏季流幅宽约80km。  相似文献   

11.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

12.
The Current System in the Yellow and East China Seas   总被引:18,自引:1,他引:18  
During the 1990s, our knowledge and understanding of the current system in the Yellow and East China Seas have grown significantly due primarily to new technologies for measuring surface currents and making high-resolution three-dimensional numerical model calculations. One of the most important new findings in this decade is direct evidence of the northward current west of Kyushu provided by satellite-tracked surface drifters. In the East China Sea shelf region, these recent studies indicate that in winter the Tsushima Warm Current has a single source, the Kuroshio Branch Current in the west of Kyushu, which transports a mixture of Kuroshio Water and Changjiang River Diluted Water northward. In summer the surface Tsushima Warm Current has multiple sources, i.e., the Taiwan Warm Current, the Kuroshio Branch Current to the north of Taiwan, and the Kuroshio Branch Current west of Kyushu. The summer surface circulation pattern in the East China Sea shelf region changes year-to-year corresponding to interannual variations in Changjiang River discharge. Questions concerning the Yellow Sea Warm Current, the Chinese Coastal Current in the Yellow Sea, the current field southwest of Kyushu, and the deep circulation in the Okinawa Trough remain to be addressed in the next decade. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
本文综合分析四个断面16个标准层的因子点聚,表明在整个海区有九个水团,即:黑潮表层水、黑潮次表层水、黑潮中层水、黑潮深层水、大陆沿岸水、台湾暖流水、黄海水、对马暖流水和东海混合水,前6个水团是该海区的主要水团。本文还详细讨论了每个水团的分布特征。  相似文献   

14.
Sea surface temperature (SST) and sea surface salinity variations at Fukue Island (located southwest of the Tsushima Straits) were investigated. In spring, low-frequency SST fluctuations with periods of 10–20 days predominate. Synthetic analysis of in situ observation and satellite infrared image reveals that these SST fluctuations are caused by movement of mixed warm water masses which have a temperature intermediate between those of the Kuroshio and the East China Sea (ECS) shelf waters. Since these fluctuations do not correspond with those in the Tsushima Straits, it is indicated that these water masses can hardly pass the Tsushima Straits while retaining their original water properties. In July, SST fluctuations with a period of several days are also found at Fukue Island. Since these SST fluctuations show an opposite correspondence with its salinity fluctuations and a good correspondence with the SST fluctuations at Okinoshima in the Tsushima Straits, it is inferred that warm and low-salinity water originated from the ECS shelf water causes these fluctuations and intrudes into the Tsushima Straits.  相似文献   

15.
南黄海环流的若干特征   总被引:47,自引:7,他引:40  
主要根据近几年来中韩黄海水循环动力学合作调查结果,结合有关历史资料,对南黄海环流的若干特征进行了分析。所得主要认识为:(1)南黄海环流存在明显的季节变异。冬、夏季环流的基本形态有着较大的差别。(2)黄海暖流的路径和强度均有一定的年际变化。分析显示,1997年冬季,暖流路径明显偏于槽的西侧;而1986年冬,暖流的主流路径则沿槽北上。(3)黄海暖流并非对马暖流的直接分支。黄海暖流水是对马暖流水和陆架水混合而成。而且,它主要是在济州岛西侧海域,从锋区中衍生出来的。(4)夏季黄海表、底层环流大致皆是由一大的道时针向流系构成。但在其表层海盐尺度的气旋式环流内部还存在小的气旋和反气旋流环。分析亦表明,不论表层或底层,皆无高盐暖水从济州岛邻近海域进入黄海东部的明显迹象。  相似文献   

16.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

17.
The most plausible scenarios for seasonal to interannual variabilities and their possible causes are investigated for the Tsushima Current system passing through the Japan Sea. The study is based on the north and south two-box model across the polar front in an idealized upper ocean of the Japan Sea. The boxes are connected by lateral diffusive heat transport and cooled by atmospheric forcing at the annual mean state. The south box, i.e. the Tsushima Current region, only interacts with the outside warmer box in the East China Sea and has an eastward thermal-driven current originating in the outside box. The magnitude of this current depends on the strength of the thermal gradient between the north and south boxes; the inflow of warm waters can therefore be maintained by net heat loss through the sea-surface. I call such a thermal-driven inflow process a "Cooling-Induced Current" system in the present study. Under periodical heat forcing, the perturbation response of the model to water temperature fields and inflow transport were examined. It is shown that the lateral diffusion time across the polar front (over a period of 10 years) is crucial to the interannual modeled response. An analysis of the seasonal heat budget suggests that the heat transported into the Japan Sea from the East China Sea in summer is stored mainly within the Tsushima Current region and contributes to heat loss by the sea-surface cooling in winter.  相似文献   

18.
48ka以来日本海Ulleung海盆南部的海洋沉积环境演化   总被引:2,自引:1,他引:1       下载免费PDF全文
晚第四纪以来伴随底层水含氧量的剧烈变化,浅色和深色沉积层的交替出现是日本海半远洋沉积物的主要特征。沉积特征分析表明,日本海Ulleung海盆南部KCES1孔的沉积物具有四种不同的沉积构造:均质、纹层、纹层状和混杂构造。深色沉积层一般具有纹层和纹层状构造,并且与我国内陆的千年尺度东亚夏季风强弱变化记录有很好的对应关系,表明纹层沉积物也具有千年尺度的变化规律,从而进一步说明了冰川性海平面变化和东亚夏季风波动应该是Ulleung海盆南部底层水溶解氧含量变化的主要原因。在暖期,在东亚夏季风降水相对增强的影响下,低温、低盐的东海沿岸水对日本海表层水体的贡献要大于对马暖流的贡献,日本海水体间的交换减弱,最终造成缺氧的海底沉积环境。在冷期,夏季风强度的减弱(冬季风增强)加快了日本海西北部深层水的生成,Ulleung海盆南部的底层水含氧量高,相应地沉积了具均质构造的浅色沉积物;在末次盛冰期最低海平面时,日本海成为一个封闭的海盆,降雨量高于蒸发量,水体出现分层,底层水处于停滞缺氧状态。自距今17.5 ka(日历年,下同)以来底层水含氧量较高,对马暖流逐渐成为影响日本海海洋沉积环境的主要因素。Ulleung海盆南部底层水的含氧量在YD期间有一定程度的降低,东海沿岸水的短暂强盛制约了深层水的流通。自距今10.5 ka以来对马暖流强盛,日本海海底处于富氧的沉积环境。  相似文献   

19.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

20.
东海和南黄海夏季环流的斜压模式   总被引:17,自引:6,他引:17  
王辉 《海洋与湖沼》1996,27(1):73-78
基于拉格朗日余流及其输运过程的一种三维空间弱非线性理论,引进了黑潮边界力及长江径流,给出了东海和南黄海的夏季环流及上升流区的分布。计算结果表明:在黑潮西侧存在着台湾-对马暖流系统;进入朝鲜海峡的对马暖流来自台湾暖流、黑潮、东海混合水和西朝鲜沿岸流;黄海暖流主要来源于东海混合水,表面有部分来自对马暖流;闽浙沿岸存在上升流区且构成一带状区域;在长江口外、东海东北部和陆坡上也存在在上升流式;陆坡处上升流  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号