首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中亚盆地钾盐矿床的形成时代目前被限定为晚侏罗世至早白垩世,较为宽泛。盐类矿物沉积之后若未被改造,可测定其形成时代;若被改造则可利用同位素测年研究其沉积后作用。为了得到中亚盆地钾盐矿床的形成时代和/或了解盐类矿物受到的后期改造过程,利用Rb-Sr同位素定年对矿床中的盐类矿物进行了测定。结果表明,无法形成可靠的Rb-Sr等时线,说明钾盐矿床中盐类矿物在形成以后Rb-Sr体系并未保持封闭;钾盐样品模式年龄介于9~4 Ma之间,岩盐样品模式年龄约为190~170 Ma。岩盐Rb含量低,积累的放射性87Sr较少,而钾盐Rb含量高,积累的放射性87Sr较多。后期受到外来流体或者光卤石结合水的作用,盐类矿物发生溶解,重结晶后造成岩盐中87Sr/86Sr值升高而钾盐87Sr/86Sr值降低。结合世界上其它钾盐矿床的Rb-Sr测年结果,认为盐类矿物并不适合研究其成矿时代,但可用来揭示钾盐盆地的变质作用过程和水文演化历史。  相似文献   

2.
The isotopic composition of Sr has been measured in brine samples from the Upper Jurassic Smackover Formation in southern Arkansas; 87Sr86Sr ratios range from 0.7071 to 0.7101. With one exception, the 32 Smackover brines contain Sr which is significantly more radiogenic than the Sr in Late Jurassic sea water, indicating sizable Sr contributions from detrital sources. Isotopic analyses of core samples from rock units associated with the brines and regional stratigraphic relationships suggest that the radiogenic Sr was released from detrital minerals in Bossier shale to interstitial fluids expelled from the underlying Louann Salt in the North Louisiana salt basin. These fluids migrated through the Bossier Formation updip to the South Arkansas shelf, where they entered the upper Smackover carbonate grainstone. The radiogenic fluids mixed with Sr-rich interstitial marine waters that had the isotopic composition of Late Jurassic sea water; mixing in variable proportions resulted in the random distribution pattern of variable 87Sr86Sr ratios that is observed in Smackover brines within the 5000 km2 study area. Isotopic analyses of nonskeletal carbonate grains and coexisting coarse calcspar cement from the upper Smackover grainstone imply that the grains were diagenetically stabilized in the presence of interstitial marine waters, whereas the calcspar cement is a relatively late diagenetic phase precipitated after the arrival of radiogenic fluids.  相似文献   

3.
《Applied Geochemistry》1998,13(4):463-475
Strontium isotope ratios were measured on 13 rock, 18 leachate and 28 pore-water samples from the Milk River aquifer, the confining argillaceous formations, and the glacial till mantling the recharge area. Strontium isotope ratios (87Sr/86Sr) of pore waters from the aquifer, confining units, and the glacial till ranged from 0.7069 to 0.7082. The 87Sr/86Sr ratios in aquifer pore waters decrease with increasing distance from the aquifer recharge area, and this is interpreted to be the result of mixing and water–rock interaction within the aquifer.The solute composition of the recharging groundwater is modified by the local lithology, causing distinct geochemical patterns along different flow paths within the aquifer. Whole-rock 87Sr/86Sr ratios indicate that the shales and till are generally more radiogenic than the aquifer sandstone. The authigenic carbonate cements and rock-forming minerals comprising the major lithologic units had little apparent influence on the pore-water Sr chemistry. Carbonate cement leachates from the till and the aquifer sandstone are more radiogenic than those from the confining shale formations. Feldspar separates from the aquifer sandstone have relatively radiogenic Sr isotope ratios, whereas bentonites from the Milk River and Colorado Shale Formations have whole-rock and leachate Sr isotope ratios that are relatively unradiogenic. Ratios of most Milk River aquifer pore waters are lower than those of any leachates or whole rocks analyzed, except the bentonites.The 87Sr/86Sr ratios of exchangeable Sr in the bentonites are similar to ratios found in the more evolved pore waters. Simple rock–water interaction models calculated for the whole-rock, leachate, and exchangeable-ion/pore-water pairs indicate that ion exchange with bentonite clays within the Milk River and Colorado Shale Formations appears to influence the isotopic evolution of the pore-water Sr in each of these units.  相似文献   

4.
87Sr/86Sr ratios of brine from samples from the Michigan and Appalachian Basins, in Ontario and Michigan, covering the stratigraphic interval from the Cambrian to Mississippian, vary from 0.708 to 0.711. With the exception of the salt units of the Salina Formation (Silurian), most values are greater than seawater for the time in question, indicating water-rock interaction. The sources of the radiogenic Sr has not been identified. All samples plot below the GMWL in δ18O−δ2H space, with the Cambrian and Ordovician samples closest to the line. Mixing of brines meteoric and glacial (Pleistocene) water is indicated in some cases. The more concentrated brines from each stratigraphic unit show a very narrow spread in values. All the Ordovician brines show a narrow range over a 200 km area for Sr, O and H isotopes, indicating extensive lateral migration of the fluids.Strontium in the brine has not equilibrated isotopically with its host rock. In some cases the late-stage minerals saddle dolomite, calcite and anhydrite have the same 87Sr/86Sr ratios as the brine, indicating that they precipitated from the brine in isotopic equilibrium.  相似文献   

5.
The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ± hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations.  相似文献   

6.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   

7.
The isotopic composition of Sr has been measured in 73 formation-water samples from Paleozoic strata in the Illinois basin; 87Sr/86Sr ratios range from 0.7079 to 0.7108. With the exception of four samples, the waters are more radiogenic than corresponding Paleozoic sea-water values. The relatively narrow range of slightly elevated 87Sr/86Sr rations is uniformly distributed in waters throughout the stratigraphic column and in Silurian waters across the basin. Isotopic analyses of core samples from reservoir rocks show an absence of water-rock Sr isotopic equilibration. Basin lithology and analyses of detrital rock units indicate that clay minerals in shales and in quartz sandstone matrices represent the only significant source of radiogenic Sr for the waters. Silurian and Devonian water show a two-component mixing relation which suggests that they comprise a single hydrogeological system that evolved when radiogenic water from New Albany shales entered Silurian-Devonian carbonate rocks and mixed with marine interstitial water. Regional migration of the waters and associated petroleum within the Silurian-Devonian strata, proposed in other studies, is consistent with the Sr isotopic data. Under favorable circumstances subsurface waters are capable of retaining a Sr isotopic recor of their evolution.  相似文献   

8.
Salt exposures and weathering residuum on several salt diapirs in different geographic/climatic settings were studied. Anhydrite, gypsum, hematite, calcite, dolomite, quartz, and clay minerals are the main constituents of the weathering residuum covering the salt diapirs in various thicknesses. Erosion rates of residuum as well as of rock salt exposures were measured at selected sites for a period of 5 years by plastic pegs as benchmarks. Recorded data were standardized to a horizontal surface and to long-term mean precipitation. For the rock salt exposures the following long-term denudation rates were determined of 30–40 mm a−1 for coastal diapirs and up to 120 mm a−1 for mountain salt diapirs. Long-term mean superficial denudation rate measured on weathering residuum of low thickness reached 3.5 mm a−1 on coastal diapirs. The total denudation rate estimated for the thin residuum is close to 4–7 mm a−1 based on apparent correlation with the uplift rate on Hormoz and Namakdan diapirs. Denudation of rock salt exposures is much faster compared to parts of diapirs covered by weathering residuum. The extent of salt exposures is an important factor in the morphological evolution of salt diapirs as it can inhibit further expansion of the diapir. Salt exposures produce huge amounts of dissolved and clastic load, thus affecting the surrounding of the diapir.  相似文献   

9.
《Applied Geochemistry》2002,17(3):285-300
Strontium and particularly 87Sr/86Sr ratios in stream water have often been used to calculate weathering rates in catchments. Nevertheless, in the literature, discharge variation effects on the geochemical behavior of Sr are often omitted or considered as negligible. A regular survey of both Sr concentrations and Sr isotope ratios of the Strengbach stream water draining a granite (Vosges mountains, France) has been performed during one year. The results indicate that during low water flow periods, waters contain lower Sr concentrations and less radiogenic Sr isotope ratios (Sr=11.6 ppb and 87Sr/86Sr=0.7246 as an average, respectively) than during high water flow periods (Sr= 13 ppb and 87Sr/86Sr=0.7252 as an average, respectively). This is contrary to expected dilution processes by meteoric waters which have comparatively lower Sr isotopic ratios and lower Sr concentrations. Furthermore, 87Sr/86Sr ratios in stream water behave in 3 different ways depending on moisture and on hydrological conditions prevailing in the catchment. During low water flow periods (discharge < 9 l/s), a positive linear relationship exists between Sr isotope ratio and discharge, indicating the influence of radiogenic waters draining the saturated area during storm events. During high water flow conditions, rising discharges are characterized by significantly less radiogenic waters than the recession stages of discharge. This suggests a large contribution of radiogenic waters draining the deep layers of the hillslopes during the recession stages, particularly those from the more radiogenic north-facing slopes. These results allow one to confirm the negligible instantaneous incidence of rainwater on stream water chemistry during flood events, as well as the existence in the catchment of distinct contributive areas and reservoirs. The influence of these areas or reservoirs on the fluctuations of Sr concentrations and on Sr isotopic variations in stream water depends on both moisture and hydrological conditions. Hence, on a same bedrock type, 87Sr/86Sr ratios in surface waters can be related to flow rate. Consequently, discharge variations must be considered as a pre-requisite when using Sr isotopes for calculating weathering rates in catchments, particularly to define the range of variations of the end-members.  相似文献   

10.
11.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (∼0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (∼0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   

12.
The 87Sr/86Sr ratios for a series of ultramafic rocks from the Lake Chatuge region range from 0.7023 to 0.7047, suggesting a direct upper mantle source and precluding a multiple differentiation origin for these alpine-type rocks. Higher 87Sr/86Sr ratios (0.7058–0.7068) for serpentinized rocks from this suite apparently reflect the influx of radiogenic 87Sr from the surrounding gneisses and schists during serpentinization.  相似文献   

13.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   

14.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin.  相似文献   

15.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   

16.
The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and 87Sr/86Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural 87Sr/86Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by 87Sr/86Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low 87Sr/86Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic 87Sr/86Sr ratios (0.7080-0.8352 for agricultural fertilizers and 0.7080-0.7200 for sewage effluents, respectively), with higher Sr concentrations (0.24-0.51 mg/L). Due to the overlapping 87Sr/86Sr ratios, it is difficult to distinguish the sources of Sr in groundwater samples contaminated by agricultural fertilizers or sewage effluents based only on their 87Sr/86Sr ratios. However, 87Sr/86Sr ratios do provide key information for natural and anthropogenic sources in karst groundwater.  相似文献   

17.
The origin of pedogenic salts in the Atacama Desert has long been debated. Possible salt sources include in situ weathering at the soil site, local sources such as aerosols from the adjacent Pacific Ocean or salt-encrusted playas (salars), and extra-local atmospheric dust. To identify the origin of Ca and S in Atacama soil salts, we determined δ34S and 87Sr/86Sr values of soil gypsum/anhydrite and 87Sr/86Sr values of soil calcite along three east-west trending transects. Our results demonstrate the strong influence of marine aerosols on soil gypsum/anhydrite development in areas where marine fog penetrates inland. Results from an east-west transect located along a breach in the Coastal Cordillera show that most soils within 90 km of the coast, and below 1300 m in elevation, are influenced by marine aerosols and that soils within 50 km, and below 800 m in elevation, receive >50% of Ca and S from marine aerosols (δ34S values > 14‰ and 87Sr/86Sr values >0.7083). In areas where the Coastal Cordillera is >1200 m in elevation, however, coastal fog cannot penetrate inland and the contribution of marine aerosols to soils is greatly reduced. Most pedogenic salts from inland soils have δ34S values between +5.0 to +8.0‰ and 87Sr/86Sr ratios between 0.7070 and 0.7076. These values are similar to average δ 34S and 87Sr/86Sr values of salts from local streams, lakes, and salars (+5.4 ±2‰ δ34S and 0.70749 ± 0.00045 87Sr/86Sr) in the Andes and Atacama, suggesting extensive eolian reworking of salar salts onto the surrounding landscape. Ultimately, salar salts are precipitated from evaporated ground water, which has acquired its dissolved solutes from water-rock interactions (both high and low-temperature) along flowpaths from recharge areas in the Andes. Therefore, the main source for Ca and S in gypsum/anhydrite in non-coastal soils is indirect and involves bedrock alteration, not surficially on the hyperarid landscape, but in the subsurface by ground water, followed by eolian redistribution of ground-water derived salar salts to soils. The spatial distribution of high-grade nitrate deposits appears to correspond with areas that receive the lowest fluxes of local marine and salar salt, supporting arguments for tropospheric nitrogen as the main source for soil nitrate.  相似文献   

18.
87Sr/86Sr ratios of alkali olivine basalts, nepheline basanites and olivine nephelinites of Miocene age from the northern Hessian Depression vary between 0.7032 and 0.7036. Tholeiitic rocks from this area, which are possibly affected by crustal contamination, have more radiogenic Sr (0.7035 to 0.7042). Peridotite xenoliths with coarse protogranular (10 samples) and with porphyroclastic textures (2 samples) contain K- and Na-rich glasses which are products of reaction of metasomatic fluids with depleted peridotite. The Sr abundance in xenoliths is related to the amount of glass (and phlogopite).Sr ranges from 11 ppm to 147 ppm and 87Sr/86Sr ratios from 0.7033 to 0.7039. The isotopic ratios are neither correlated with Sr concentrations nor with Rb/Sr ratios. 87Sr/ 86Sr ratios of etched clinopyroxenes range from 0.7028 to 0.7040. In some xenoliths, clinopyroxenes differ from the whole rock samples significantly in their isotopic composition.If almost all of the pre-metasomatic Sr was located in the clinopyroxenes, the metasomatically introduced Sr ranges from 35 to 80% of the whole rock Sr. The calculated isotopic composition ranges from 0.7033 to 0.7040 for the majority of the xenoliths. For two pyroxenes which are not in isotopic equilibrium with the whole rock, the age of the metasomatic event could be estimated on the base of diffusion of Sr in clinopyroxene. Even assuming a diffusion coefficient as low as 10–15 cm2s–1 the time between the metasomatic alteration and the eruption of the basaltic host magma must be shorter than 1 Ma.The 87Sr/86Sr ratios of the basalts are interpreted as products of mixtures of a depleted component ( 0.7028) and metasomatic fluids (0.7035–0.7053) in their source peridotite.  相似文献   

19.
Strontium isotopic composition (87Sr/86Sr) of two petrographically, chemically and isotopically (δ18O and δ13C) distinct phases of burial calcites from the Lincolnshire Limestone are indistinguishable (0.70820± 26). The mean 87Sr/86Sr ratio of these phases is considerably more radiogenic than 87Sr/86Sr ratios of Bajocian marine waters (~0.70725). Neither Bajocian marine waters nor meteoric waters buffered by host marine carbonate in the Limestone could have precipitated the burial spars. Radiogenic strontium may have been contributed from K-feldspar dissolution and/or clay recrystallization, either within clastic portions of the Limestone itself, or from major clastic units adjacent to the Limestone. Alternatively, Palaeozoic marine waters or remobilized Palaeozoic marine carbonate and/or sulphate could have supplied the necessary radiogenic strontium.  相似文献   

20.
The Newer Volcanics Province of Victoria and South Australia consists of a major region of mainly alkaline basalts within which are two restricted areas containing strongly differentiated flow‐rocks. Typical alkalic basalts from this widespread province have K‐Ar ages from 4.5 to 0.5 m.y. and initial 87Sr/86Sr ratios from 0.7038 to 0.7045. Contrastingly, in the Macedon area of differentiated lavas, flow compositions range from limburgite to soda trachyte, with K‐Ar ages from 6.8 to 4.6 m.y. and initial 87Sr/86Sr ratios from 0.7052 to 0.7127. These differentiated rocks therefore are older, and some of them may have been contaminated by reaction with more radiogenic basement rocks during differentiation. Alternatively, the variation in initial Sr‐isotope composition may have resulted from varying isotopic composition of partial melts from the immediate source rocks. The most felsic of the differentiated rocks, soda trachyte, is extremely enriched with Rb relative to Sr; one of the three restricted outcrops of this rock (Camel's Hump) yields a total‐rock Rb‐Sr isochron age of 6.3 ± 0.6 m.y. with an initial 87Sr/86Sr ratio of 0.7127. K‐Ar sanidine ages reported for the three outcrops of trachyte are identical to each other and to the Rb‐Sr isochron result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号