首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Uranium in Phosphorites   总被引:1,自引:0,他引:1  
The uranium concentration in phosphorites on continents and modern seafloor varies from 0.nto n· 102ppm (average 75 ppm). The average uranium concentration is 4–48 ppm in Precambrian and Cambrian deposits, 20–90 ppm in Paleozoic and Jurassic deposits, 40–130 ppm in Late Cretaceous–Paleogene deposits, 30–130 ppm in Neogene deposits, and 30–110 ppm in Quaternary (including Holocene) deposits. On the whole, the variation range is almost similar for phosphorites of different ages. The U/P2O5ratio in phosphorites ranges from less than unity to 24 · 10–4(average 3.2 · 10–4). Major phosphorite deposits of the world with ore reserves of approximately 250 Gt (or 58 Gt P2O5) contain up to 19 Mt of uranium. Uranium is present in phosphorites in the tetra- and hexavalent, i.e., U(IV) and U(VI) forms, and their ratio is highly variable. At the early diagenetic stage of the formation of marine phosphorites in a reductive environment, U(VI) diffuses from the near-bottom water into sediments. It is consequently reduced and precipitated as submicroscopic segregations of uranium minerals (mainly uraninite) that are probably absorbed by phosphatic material. During the subsequent reaction between phosphorites and aerated water and the weathering in a subaerial environment, uranium is partly oxidized and lost. The uranium depletion also occurs during catagenesis owing to a more complete crystallization of calcium phosphate and replacement of nonphosphatic components.  相似文献   

2.
Variations in mercury contents in marine sediments have implications for hydrothermal activity, paleoclimate, depositional environments, and primary bioproduction. Mercury contents reach 148 ppb in hydrogenic ferromanganese crusts on flat-topped seamounts. Such crusts, with up to 4120 ppb Hg, were dredged from the slopes of Seth Guyot in the western Marcus-Wake Seamounts in 1982, during the 13th cruise of RV Vulkanolog. The Seth Fe-Mn crusts are of the same origin as hydrogenic Co-rich ferromanganese deposits from seamounts in other oceanic regions. Mercury accumulated in the Cenozoic as Fe-Mn oxyhydroxides in the crusts adsorbed Hg from bottom water. The process was especially rapid during the Pliocene volcano-tectonic rejuvenated stage.  相似文献   

3.
This paper presents the results of the integrated study of ferromanganese crusts from the Belyaevsky (Central Basin) and Medvedev (Honshu Basin) seamounts from the Sea of Japan. The study of the mineral composition using powder diffraction and optical and electron microscopy showed that the crusts are made up of todorokite, birnessite, and pyrolusite minerals typical of hydrothermal ferromanganese deposits of the World Ocean. The composition of the ferromanganese crusts from the Sea of Japan was determined by ICP-MS and ICP-OES. The contents of Mn, Fe, Co, Cu, Ni, and other major and trace elements indicate the hydrothermal genesis of the crusts. The obtained data on the composition of ferromanganese crusts of the Sea of Japan, as well as their comparison with different types of deposits of the World Ocean, suggest the endogenic genesis of the studied crusts. However, the REE and Y distribution patterns testify to a significant admixture of hydrogenic matter, which participated in the growth of ferromanganese crusts from the Belyaevsky and Medvedev seamounts.  相似文献   

4.
磷块岩矿床的形成总是同特定的沉积相和沉积环境相联系的。从古地理分布看,它们多半产在该成矿时期的海侵前缘带、陆表海和深水盆地的过度部位或水下高地的周围地带。磷矿层多出现于海侵序列的底部或下部,但是含磷岩系本身则既可以是退积式的,也可以是进积式的。  相似文献   

5.
富钴结壳中的磷酸盐岩及其古环境指示意义   总被引:5,自引:0,他引:5  
磷酸盐岩是富钴结壳老壳层的主要组分之一。本文对来自中太平洋海山的三块富钴结壳样品中的磷酸盐岩进行了研究,以期对富钻结壳形成环境的变化有所了解。通过扫描电镜发现结壳中磷酸盐岩的形态有六种,磷酸盐岩主要分布在老壳层,新壳层中偶见。结壳中的磷酸盐岩为碳氟磷灰石(CFA),经成分分析及电镜中反射色的差异可以区分出两种成因的CFA:一种为交代碳酸盐岩型的,相对富Si、Al、Fe;另一种为从结壳孔隙水中直接沉淀而成的,基本不含Si、Al、Fe。对CB12样品中磷酸盐岩脉进行生物地层学鉴定,得出其老壳层下部火焰状磷酸盐岩的形成年代为晚渐新世一早中新世(23.2-29.9Ma),而其上部充填脉状磷酸盐岩的形成年代为中中新世(10.8-16Ma)。老壳层中富集磷酸盐岩说明在结壳形成早期,结壳形成环境条件尚不够稳定,底部存在富磷深层储库,当底流突然增强时,可携带磷在海山上交代结壳中的碳酸盐岩或在结壳内部合适条件下直接沉淀形成磷酸盐岩充填脉。新壳层形成时底流已相对髂定,富磷深层储库已消失,不再有广泛磷酸盐化形成。  相似文献   

6.
Cadmium is the most toxic admixture in mineral fertilizers. The Cd concentration in Mesozoic phosphorites, which are widespread in the East European Platform, has not been investigated. The present study was stimulated by the scanty and contradictory nature of the published data on this issue. We determined Cd concentration in 21 phosphorite samples from major deposits and checked the reliability of obtained results by external replicate analyses. It has been established that the Cd concentration in phosphorites varies from 5 ppm in the Late Jurassic–Early Cretaceous basin to 2 ppm in the Late Cretaceous basin. Cadmium does not enter the structure of phosphate and sulfide minerals. The Cd concentration is independent of the phosphorus abundance. However, all studied samples show a positive correlation of Cd with organic matter mainly contained in phosphates, supporting the biophilic nature of Cd. Mesozoic phosphorites of the East European Platform accumulated in epicontinental basins. They are significantly depleted in Cd relative to Mesozoic–Cenozoic phosphorites in pericontinental basins of the southern margin of the Tethys Ocean. The Cd concentration is more stable in Mesozoic phosphorites than in Mesozoic–Cenozoic deposits.  相似文献   

7.
Ferromanganese micro- and macronodules in eupelagic clays at Site 35 of the South Basin were examined in order to check the REE distribution during the ferromanganese ore formation in nonproductive zones of the Pacific Ocean. We studied host sediments and their labile fraction, ferromanganese micronodules (fractions 50–100, 100–250, 250–500, and >500 m) from eupelagic clays (horizons 37–40, 105–110, 165–175, and 189–190 cm), and buried ferromanganese micronodules (horizons 64–68, 158–159, and 165–166 cm). Based on phase analysis data, the anomalous REE enrichment of eupelagic clays from Site 35 is related to the accumulation of rare earth elements in iron hydroxophosphates. The Ce concentration, generally linked to manganese oxyhydroxides, is governed by the oxidation of Mn and Ce in oceanic surficial waters. Micronodules (Mn/Fe = 0.7–1.6) inherit compositional features of the labile fraction of sediments. The Ce, Co, and Th concentrations depend on the micronodule dimension. The enrichment of micronodules in hydrogenic or hydrothermal substance is governed by their dimension and the dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in the compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. The compositional variation of micro- and macronodules, relative to the labile fraction of sediments, in the Pacific nonproductive zone dramatically differs from the pattern in bioproductive zones, where micronodule compositions in larger fractions are similar to those in associated macronodules and labile fractions of the host sediment as a result of the more intense suboxidative diagenesis.  相似文献   

8.
Rare earth elements in phosphate-ferromanganese crusts on Pacific seamounts   总被引:1,自引:0,他引:1  
Based on publications devoted to the composition of P-rich ferromanganese crusts on Pacific seamounts, relationships between the REE distribution in the crusts and the contents of phosphates and Fe-Mn hydroxides therein are considered. It is shown that REEs in the crusts are related to all three mineral phases and their contents are variable. In general, the REEs show weak correlations with P, Mn, and Fe in different varieties of ore crust. Average REE contents are comparable in samples with the maximal and minimal phosphorus contents, suggesting irregularity of REE distribution in the phosphates and ferromanganese phases. This fact is consistent with data on the presence of natural REE minerals in the phosphates.  相似文献   

9.
Iron and phosphorite ores are very common in the geological record of Egypt and exploitable for economic purposes. In some cases these deposits belong together to the same geographic and geologic setting. The most common deposits include phosphorites, glauconites, and iron ores. Phosphorites are widely distributed as a belt in the central and southern part of Egypt. Sedimentary iron ores include oolitic ironstone of Aswan area and karstified iron ore of Bahria Oasis. Glauconites occur in the Western Desert associated with phosphorites and iron ores. As these ores are exploitable and phosphorus in iron ores and iron in phosphorites are considered as gangue elements, the iron–phosphorus relationship is examined in these deposits to clarify their modes of occurrences and genetic relationship based on previously published results.Phosphorus occurs mainly as carbonate fluorapatite (francolite). Iron, on the other hand, occurs in different mineralogical forms such as glauconites, hematite, limonite and goethite.In P-rich rocks (phosphorites) no relationship is observed between iron and phosphorus, which in turn indicates that the FeP model is unlikely to interpret the origin of the late Cretaceous phosphorites and the association of phosphorites and glauconites in Egypt. In Fe-rich rocks (iron ores and glauconites) also no relationship between iron and phosphorus is observed. The present work, therefore, does not support the hypothesis that there is a genetic relationship between phosphorus and iron in sedimentary rocks.  相似文献   

10.
西太平洋海底海山富钴结壳惰性气体同位素组成及其来源   总被引:2,自引:2,他引:2  
采用高真空气体质谱系统测定了西太平洋麦哲伦海山富钴结壳不同层圈及其基岩的惰性气体丰度和同位素组成,结果显示:(1)西太平洋富钴结壳主要是水成成因,其中惰性气体来源不同,He 绝大多数来自宇宙尘(IDPs),少量来自陆源风成微粒;Ar 主要来自海水溶解的大气,少量来自陆源风成微粒或沉积岩建造水;Ne 和 Xe 主要来自海水中溶解大气, 少量来自宇宙尘;(2)在具三层结构的结壳中,亮煤层(致密层)的惰性气体同位素相对外层和疏松层有较大的不同,显示大洋磷酸岩化对早期沉积的结壳惰性气体组成有较大的影响,如导致~4He 的升高和~3He/~4He 的显著降低;(3)太平洋富钴结壳玄武岩基岩的~3He/~4He 非常低,为0.0095~0.074Ra,与本区磷块岩基岩(0.087Ra)相似,而远低于正常海底玄武岩的~3He/~4He 比值,显示这些基岩曾与富含放射性成因~4He 和 P 的上升洋流或沉积物中建造水发生过水/岩反应,这个过程将释放出较多的成矿元素,有利于富钴结壳的形成,海底海山玄武岩中较低的 He 同位素组成可作为富钴结壳的找矿标志之一。  相似文献   

11.
Trace elements in supergene phosphorites   总被引:1,自引:0,他引:1  
Supergene phosphorites were analyzed for Sr, Ba, Zn, Cd, Sc, Cr, Ag, and V, i.e., elements incorporated in carbonate-apatite by isomorphic substitution. The phosphorites were subdivided into four groups: (1) phosphorites related to the weathering of sedimentary rocks, (2) phosphorites related to the weathering of endogenous rocks, (3) lacustrine coprolite phosphorites, and (4) phosphorites of ocean islands. In all the phosphorites groups, Sr, Zn, and Ba were the most abundant of the trace elements, whereas Cd, Ag, and Sc showed the lowest concentrations. Variations in trace element contents between supergene phosphorites of different genetic groups or within a single group can be explained by the different compositions of weathered rocks and geochemical environments of supergene phosphorite formation. At the same time, the contents of some trace elements are correlated with the structural type of phosphorite. In particular, phosphorite crusts or only their outer parts show elevated contents of chalcophile elements (Cd, Zn, and Ag), whereas massive phosphorites and inner parts of crusts are often enriched in such lithophile elements as Sc, V, and Cr. It was found that Cd, Zn, Ag, Sr, and Ba are positively correlated with CO2 but show negligible correlations with other constituents of carbonate-apatite.  相似文献   

12.
Eight ferromanganese crusts (Fe-Mn crusts) with igneous and sedimentary substrates collected at different water depths from the Afanasiy-Nikitin Seamount are studied for their bulk major, minor and rare earth element composition. The Mn/Fe ratios < 1.5 indicate the hydrogenetic accretion of the Fe-Mn hydroxides. These Fe-Mn crusts are enriched in Co (up to 0.9%, average ∼ 0.5%) and Ce. The Ce-content is the highest reported so far (up to 3763 ppm, average ∼ 2250 ppm) for global ocean seamount Fe-Mn crusts. In spite of general similarity in the range of major, minor, and strictly trivalent rare earth element composition, the dissimilarity between the present Fe-Mn crusts and the Pacific seamount Fe-Mn crusts in Co and Ce associations with major mineral phases indicates inter-oceanic heterogeneity and region-specific conditions responsible for their enrichment. The decrease in Ce-anomaly (from ∼ 8 to ∼ 1.5) with increasing water depth (from ∼ 1.7 km to ∼ 3.2 km) might suggest that the modern intermediate depth low oxygen layer was shifted and sustained at a deeper depth for a long period in the past.  相似文献   

13.
The paper presents results of the detailed study of phosphorites from manganiferous beds of the Chiatura deposit. The relatively high-grade (P2O5 20–28%) phosphorites are represented by various rocks ranging from the variety dominated by massive phosphates with a rare aleuritic admixture of quartz and feldspar grains to rocks mainly composed of terrigenous material with phosphates in the matrix. Phosphates make up the matrix of various organic remains: differently preserved diatom algae and microbial species. Some relatively large organic remains (in particular, sponge spicules) are typically composed of iron minerals (with manganese admixture) rather than phosphates. Manganese ores comprise phosphorite fragments composed of phosphatized cyanobacterial mat. Phosphorites of the Chiatura deposit were likely formed in a shallow-water zone away from the continental land.  相似文献   

14.
西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定   总被引:3,自引:0,他引:3  
利用激光剥蚀电感耦合等离子体质谱(LA-ICPMS)微区原位分析方法,对采自西太平洋海山具完整三层结构的富钴结壳样品进行了稀土元素(REE)含量测定,结果表明, 虽然均产于西太平洋海山且均具有明显的三层结构,富钴结壳化学组成受地理位置和沉积环境影响很大。绝大多数西太平洋富钴结壳具有高ΣREE、高LREE/HREE、δCe正异常和δEu基本无异常或微弱正异常的特点, 显示它们主要由正常海水沉积形成。结壳不同层圈之间REE组成有较大的区别, 其原因主要在于其形成环境和矿物组成不同。样品0327稀土元素总量(∑REE)由亮煤层到疏松层到外层逐渐升高,且亮煤层δCe和Y/Ho变化非常大,最大值分别为38.61和105.5,显示该层生长环境较为氧化且相对动荡,而样品0346中三层结构的∑REE都非常高,且变化趋势与0327正好相反,从亮煤层到致密层∑REE有降低的趋势。 亮煤层形成时海水相对较氧化的环境有利于铁锰氧化物的形成和Ce4+等稀土元素的吸附,导致其中ΣREE较疏松层和外层为高,而后期磷酸盐化导致REE元素的迁移和亏损。在结壳生长剖面上,由最外层到疏松层和亮煤层,δCe呈明显上升趋势,且变化范围趋大,说明该结壳所处的海水环境在由老至新的生长过程中由相对动荡和氧化变为相对平静和还原。  相似文献   

15.
The paper presents a comparative analysis of ferromanganese crusts and concretions (FMC) recovered during the dredging of 14 seamounts in the Central Basin, Sea of Japan. The major rock-forming elements in FMC are Mn, Fe, and Si. In terms of the Mn content, the studied 53 samples are divided into four groups: (1) less than 10% (given than concentrations of 2–8% are lacking); (2) 10?25%; (3) 25?42%; and (4) 42?63%. The (Mn + Fe)/Si ratio increases from group 1 to group 4, and average value in them is 1.6, 2.5, 6.7, and 70.7, respectively. Taking Fe/Si and Mn/Si values into consideration, concretions of these groups belong to the following varieties: (1) ferrosiliceous; (2) mangano-ferrosiliceous; (3) siliceous-ferromanganese, and (4) manganiferous. The highest concentration of nonferrous metals is observed in FMC of groups 2 and 3. Their concentration is slightly lower in group 4 and very low in group 1. The internal structure of FMC in these groups is variable, suggesting their different formation settings. Crusts of group 1 were formed during the precipitation of Mn from a hydrothermal plume on the older ferrosiliceous crusts. Crusts of groups 2 and 3 were likely formed by the diffuse percolation of Mn-bearing hydrothermal solutions along fractures and weakened zones in volcanic rocks, with their subsequent cementation by manganiferous hydroxides from sedimentary or volcaniclastic deposits on seamounts. Crusts of group 4 were formed at sites of the hydrothermal solution discharge on the seafloor. FMC of different groups are recovered during the dredging of most volcanic seamounts in the Central Basin (Sea of Japan). Since the dredging is accomplished at a depth interval of a few hundreds of meters, the detection of concretions of a certain type is governed by the distance to the nearest hydrothermal source.  相似文献   

16.
The distribution of uranium was studied in supergene phosphorites from the zones of the weathering of sedimentary and endogenous rocks, as well as in nonmarine coprolitic phosphorites and, to a lesser extent, phosphorites from ocean islands. These phosphorites show a diversity of the composition of their carbonate-apatite and structural characteristics. The uranium content ranges mostly from 5 to 100 ppm, with minimum and maximum values of 0.5 and 790 ppm. There is no correlation between the uranium content of a phosphorite and the type of rock with which it is connected. Lacustrine coprolitic phosphorites show elevated uranium contents (about 200 ppm). The maximum uranium content was detected in finely laminated phosphorite encrustations. The correlation analysis of the whole data set (63 samples) showed that uranium content is not correlated with any other component of phosphorites at a confidence level of 0.95. In contrast, there is a correlation between U and P2O5, CaO, and F for the combined set of samples from southern Siberian deposits. The significant correlation of U with Na2O and CO2 is variable both for southern Siberia on the whole and for particular deposits from this region.  相似文献   

17.
An analysis of rare earth elements in various types of supergene phosphorites established the following sequence of increasing average total contents (ppm): phosphorite from Christmas Island in the Indian Ocean, 3.89; spelean coprolitic phosphorite, 21.98; phosphorite from the weathering zone of sedimentary rocks, 27.41; phosphorite from the weathering zone of endogenous rocks, 372.32; and lacustrine coprolitic phosphorite, 461.59. Supergene phosphorites, especially the most common among them from the weathering zone of sedimentary rocks, are significantly depleted relative to marine phosphorites both in average and maximum REE contents. The REE contents of supergene phosphorites are controlled by several factors, including the REE contents in the primary rocks affected by weathering, the physicochemical conditions of phosphorite formation, the presence of a biogenic component in the phosphatogenetic system, and the structural type of the phosphorites. There is a strong positive correlation within the group of light and, in part, middle REEs (La, Ce, Nd, Sm, and Eu) and between the heavy REEs Yb and Lu, whereas the correlation between these two groups is weaker or insignificant. Gd and Tb are well correlated with the elements of both groups.  相似文献   

18.
Possible sources of gallium in hydrothermal-sedimentary ferromanganese crusts of the Belyaevsky Seamount (Central Basin, Sea of Japan) are considered. Studies with successive selective leaching have shown that ~ 80% of Ga are present in the manganese fraction. The Changbaishan Volcano ash with up to 35.3 ppm Ga has been found in the marine sediment column located in the immediate vicinity of the Belyaevsky Seamount. This suggests that Ga of the Fe–Mn crusts of the seamount was supplied with the ash of volcanic rocks containing up to 300 ppm Ga.  相似文献   

19.
Ferromanganese crusts cover all outcrops on Takuyo-Daigo seamount traversed during remotely operated underwater vehicle (ROV) dives, except in places covered by foraminifera sand. Takuyo-Daigo is a Cretaceous seamount located in the northwest Pacific Ocean. Geological and bathymetric mapping provide the framework for this study. Chemical and mineralogical analyses of the hydrogenetic ferromanganese crusts show temporal and spatial variations typical of those found in previous studies. Outcrops from 800 to 5500 m water depths are covered with ferromanganese crusts up to 105 mm thick. Beryllium isotope dating shows that the crusts have apparently been growing continuously at all water depths, even through the modern oxygen minimum zone (OMZ), contrary to some earlier models for deposition. Growth rates vary from 2.3 to 3.5 mm/Myr, with Fe or Mn fluxes of 0.07–0.11 g/cm2/Myr since the early-middle Miocene. Co/Mn ratios decrease with water depth while Fe/Mn and other metallic elements increase or show no change, based on the analysis of the uppermost crust surface. This is probably because Co is the most abundant redox-sensitive element derived from seawater that occurs in crusts.  相似文献   

20.
The Khubsugul phosphate-bearing basin divided into the western and eastern zones. Phosphorites composed of alternating structureless phosphate layers (1–3 cm) and thinner lenticular dolomite laminae prevail in the western zone corresponding to the distal part of the sedimentation profile. Contents of all trace elements are approximately equal and correspond to the clarke level in both phosphate and dolomite layers. The laminae are also identical in terms of the low (–7 PDB) 13 values. Phosphorites of the western zone were rapidly buried and the presence of dolomite intercalations is explained by postsedimentary segregation. The eastern proximal zone is dominated by the so-called dolomitic phosphorites with variable-size irregular fragments of phosphate matter enclosed in the later dolomitic matrix. Relative to structureless varieties, granular (pelletal) phosphorites of the basin are subordinate and enriched in trace elements (particularly, rare earth elements). Phosphate facies are replaced by black shales on the western side of the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号