首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Unequal illumination of the subsurface highly impacts the quality of seismic imaging. Different image points receive different folds of reflection‐angle illumination, which can be caused by irregular acquisition or by wave propagation in complex media. Illumination problems can deteriorate amplitudes in migrated images. To address this problem, we present a method of stacking angle‐domain common‐image gathers, in which we use local similarity with soft thresholding to determine the folds of local illumination. Normalization by local similarity regularizes local illumination of reflection angles for each image point of the subsurface model. This approach compensates for irregular illumination by selective stacking in the image space, regardless of the cause of acquisition or propagation irregularities. Additional migration is not required because the methodology is implemented in the reflection angle domain after migration. We use two synthetic examples to demonstrate that our method can normalize migration amplitudes and effectively suppress migration artefacts.  相似文献   

2.
基于弹性波动理论的多波多分量高斯束偏移具有计算效率高和成像准确等优点.但是目前此方法没有考虑实际地下介质的黏弹性对地震波传播的影响,从而无法补偿能量衰减和校正相位畸变,这使得该方法对一些含高黏弹性地层的成像效果不佳.针对衰减区域的成像问题,本文提出一种黏弹性衰减补偿高斯束偏移方法,该方法以多波多分量矢量波场弹性高斯束偏移方法为基础,在偏移过程中沿射线路径通过引入品质因子Q来考虑黏弹性影响并进行衰减补偿.该方法能够在偏移过程中实现PP波和PS波的自动分离及分别成像.同时,本文给出了在矢量波场偏移过程中提取角度域共成像点道集的方法,以便用于成像质量控制,并为后续速度和黏弹性参数反演提供所需的数据.本文利用2D层状模型和洼陷模型进行了方法测试,其成像结果验证了本文所提出的黏弹性衰减补偿高斯束偏移方法的可行性和有效性.  相似文献   

3.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated.  相似文献   

4.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

5.
基于平面波照明的偏移成像补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
受地下复杂构造和地震数据采集系统的影响,地震波对地下目标的照明出现不均匀,在地震数据的偏移成像中出现成像阴影.根据地震数据最小二乘偏移/反演理论,和把地震波场照明结果作为最小二乘偏移/反演中的Hessian矩阵的近似对偏移成像进行补偿的原理,提出一种应用平面波照明结果对平面波偏移成像结果进行补偿以消除偏移成像阴影的方法.这种基于平面波照明的偏移成像补偿方法相对于局部角度域的照明偏移成像补偿方法具有计算效率上的优势.  相似文献   

6.
煤层陷落柱散射波数值模拟与成像   总被引:1,自引:1,他引:0       下载免费PDF全文
曹志勇  王伟  王赟 《地球物理学报》2012,55(5):1749-1756
煤层陷落柱是煤田勘探开发中常见的一种典型的非均匀地质体.由于来自陷落柱的反射信号少、反射能量弱,使得基于反射波原理的常规地震成像方法难以有效识别陷落柱.本文以散射波理论为基础,采用数值模拟方法,研究了陷落柱的散射波场特征,研究表明地面接收的波场中含有来自陷落柱陡倾角界面的散射波场.通过共散射点道集波场的模拟,可以清晰地识别散射波,获得地下散射点和非均匀地质体的信息,判断散射点的位置,从而勾画出不均匀地质体的形态.采用等效偏移距假设抽取共散射点道集,在此基础上进行叠前偏移,对陷落柱成像;模拟与实际数据成像结果对比表明此方法能够合理地提取散射点的散射波场信息,对陷落柱形态及内部结构准确成像,是一种有效的煤田陷落柱成像方法.  相似文献   

7.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

8.
地震资料含有各种类型多次波,而传统成像方法仅利用地震一次反射波成像,在地震成像前需将多次波去除.然而,多次波携带了丰富的地下结构信息,多次波偏移能够提供除反射波外的额外地下照明.修改传统逆时偏移方法,用包含一次反射波和多次波的原始记录代替震源子波,将SRME方法预测的表面多次波代替一次反射波作为输入数据,可将表面多次波成像.多次波成像的挑战和困难在于大量串扰噪声的产生,针对表面多次波成像中的成像噪声问题,将最小二乘逆时偏移方法与多次波分阶思想结合起来,发展可控阶数的表面多次波反演成像方法,有望初步实现高精度的表面多次波成像.在消除原始记录中的表面多次波后,通过逆散射级数方法预测得到层间多次波,将层间多次波作为逆时偏移方法的输入数据可将其准确归位到地下反射位置.数值实验表明,多次波成像能够有效地为地下提供额外照明,而可控阶表面多次波最小二乘逆时偏移成像方法几乎完全避免成像噪声.  相似文献   

9.
Attenuation in seismic wave propagation is a common cause for poor illumination of subsurface structures. Attempts to compensate for amplitude loss in seismic images by amplifying the wavefield may boost high‐frequency components, such as noise, and create undesirable imaging artefacts. In this paper, rather than amplifying the wavefield directly, we develop a stable compensation operator using stable division. The operator relies on a constant‐Q wave equation with decoupled fractional Laplacians and compensates for the full attenuation phenomena by performing wave extrapolation twice. This leads to two new imaging conditions to compensate for attenuation in reverse‐time migration. A time‐dependent imaging condition is derived by applying Q‐compensation in the frequency domain, whereas a time‐independent imaging condition is formed in the image space by calculating image normalisation weights. We demonstrate the feasibility and robustness of the proposed methods using three synthetic examples. We found that the proposed methods are capable of properly compensating for attenuation without amplifying high‐frequency noise in the data.  相似文献   

10.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

11.
Wavefield‐based migration velocity analysis using the semblance principle requires computation of images in an extended space in which we can evaluate the imaging consistency as a function of overlapping experiments. Usual industry practice is to assemble those seismic images in common‐image gathers that represent reflectivity as a function of depth and extensions, e.g., reflection angles. We introduce extended common‐image point (CIP) gathers constructed only as a function of the space‐ and time‐lag extensions at sparse and irregularly distributed points in the image. Semblance analysis using CIP's constructed by this procedure is advantageous because we do not need to compute gathers at regular surface locations and we do not need to compute extensions at all depth levels. The CIP's also give us the flexibility to distribute them in the image at irregular locations aligned with the geologic structure. Furthermore, the CIP's remove the depth bias of common‐image gathers constructed as a function of the depth axis. An interpretation of the CIP's using the scattering theory shows that they are scattered wavefields associated with sources and receivers inside the subsurface. Thus, when the surface wavefields are correctly reconstructed, the extended CIP's are characterized by focused energy at the origin of the space‐ and time‐lag axes. Otherwise, the energy defocuses from the origin of the lag axes proportionally with the cumulative velocity error in the overburden. This information can be used for wavefield‐based tomographic updates of the velocity model, and if the velocity used for imaging is correct, the coordinate‐independent CIP's can be a decomposed as a function of the angles of incidence.  相似文献   

12.
利用偏移进行视反射率估计的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
视反射率估计是地震数据处理解释中的一项重要内容,通常采用反演的方法得到.本文以地震偏移和地震线性反演理论相结合为基础,并利用保幅单程波传播算子和保幅波动方程叠前偏移算法以及成像空间中的角度域波动方程偏移成像和照明补偿等方法技术,提出了一种利用单程波波动方程偏移进行地下反射面视反射率估计方法,并进行了理论模型的数值试验.这种估计方法得到的视反射率估计是一种近法向入射的小角度反射率.  相似文献   

13.
Recent advances in survey design have led to conventional common‐midpoint‐based analysis being replaced by subsurface‐based seismic acquisition analysis, with emphasis on advanced techniques of illumination analysis. Among them is the so‐called focal beam method, which is a wave‐equation‐based seismic illumination analysis method. The objective of the focal beam method is to provide a quantitative insight into the combined influence of acquisition geometry, overburden structure, and migration operators on the resolution and angle‐dependent amplitude fidelity of the image. The method distinguishes between illumination and sensing capability of a particular acquisition geometry by computing the focal source beam and the focal detector beam, respectively. Sensing is related to the detection properties of a detector configuration, whereas illumination is related to the emission properties of a source configuration. The focal source beam analyses the incident wavefield at a specific subsurface grid point from all available sources, whereas the focal detector beam analyses the sensing wavefield reaching at the detector locations from the same subsurface grid point. In the past, this method could only address illumination by primary reflections. In this paper, we will extend the concept of the focal beam method to incorporate the illumination due to the surface and internal multiples. This in fact complies with the trend of including multiples in the imaging process. Multiple reflections can illuminate a target location from other angles compared with primary reflections, resulting in a higher resolution and an improved illumination. We demonstrate how an acquisition‐related footprint can be corrected using both the surface and the internal multiples.  相似文献   

14.
In areas with strong velocity gradients, traditional reverse time migration based on cross-correlation imaging condition not only produces low-frequency noise but also generates diving wave artefacts. The artefacts caused by diving waves have no typical low-frequency characteristics and cannot be eliminated by simple high-pass filtering approaches. We apply the wave-field decomposition imaging condition to analyse the causes of false images in reverse time migration by decomposing the full wave-field into up-going and down-going components in the angle domain. We find that artificial diving wave imaging artefacts, which are generated by the cross-correlation between the up-going source and down-going receiver wave-fields in areas with strong velocity gradients, arise at large angles. We propose an efficient strategy by means of the wavelength-dependent smoothing operator to eliminate artefacts from artificial diving waves in reverse time migration. Specifically, the proposed method provides more reasonable down-going wave-fields in areas with sharp velocity constructs by considering the factor of varying seismic wavelengths during wave propagation, and the artificial components of diving waves are eliminated in a straightforward manner. Meanwhile, the other wave-field components that contribute to true subsurface images are minimally affected. Benefiting from a smoothed velocity, the proposed method can be adapted to the traditional reverse time migration imaging frame, which reveals significant implementation potential for the seismic exploration industry. A salt model is designed and included to demonstrate the effectiveness of our approach.  相似文献   

15.
Extended common‐image‐point gathers (CIP) constructed by wide‐azimuth TI wave‐equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space‐ and time‐lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space‐lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray‐based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles.  相似文献   

16.
TI介质局部角度域射线追踪与叠前深度偏移成像   总被引:1,自引:1,他引:0       下载免费PDF全文
研究与实践表明,对于长偏移距、宽方位地震数据,忽略各向异性会明显降低成像质量,影响储层预测与描述的精度.针对典型的横向各向同性(TI)介质,本文面向深度域构造成像与偏移速度分析的需要,研究基于射线理论的局部角度域叠前深度偏移成像方法.它除了像传统Kirchhoff叠前深度偏移那样输出成像剖面和炮检距域的共成像点道集,还遵循地震波在成像点处的局部方向特征、基于扩展的脉冲响应叠加原理获得入射角度域和照明角度域的成像结果.为了方便快捷地实现TI介质射线走时与局部角度信息的计算,文中讨论和对比了两种改进的射线追踪方法:一种采用从经典各向异性介质射线方程演变而来的由相速度表征的简便形式;另一种采用由对称轴垂直的TI(即VTI)介质声学近似qP波波动方程推导出来的射线方程.文中通过坐标旋转将其扩展到了对称轴倾斜的TI(即TTI)介质.国际上通用的理论模型合成数据偏移试验表明,本文方法既适用于复杂构造成像,又可为TI介质深度域偏移速度分析与模型建立提供高效的偏移引擎.  相似文献   

17.
18.
本文提出用于地下成像无源地震方法的分析,在该方法中应用环境地震噪声作为地下散射体的照明源。该成像算法能够以递归方式将新的数据融入到成像中,这使成像背景噪声随时间减少。在空间域不相干环境背景噪声的假设前提下推导出成像算法的点-扩展函数。点-扩展函数表征成像的分辨率,即接收排列长度和环境带宽的函数。  相似文献   

19.
基于单程波偏移算子的地表相关多次波成像   总被引:3,自引:3,他引:0       下载免费PDF全文
在常规地震资料处理中,多次反射波被视为噪声并从地震数据中去除,以免在之后的地震资料解释中造成误解.而事实上,多次波也是地震信号,是照明波场的一部分,能够对地下构造成像的精度做出贡献.本文分析了多次波在传统单程波叠前深度偏移中产生构造假象的机制和表现,为实现基于单程波偏移算子的多次波成像,修改了单程波叠前深度偏移的边界条件,即将输入的震源波场用包含多次波的记录来替代,输入的记录波场用预测出的表层相关多次波来替代,实现了基于单程波偏移算子的地表相关多次波成像,并从理论上给出了其成像依据.通过基于二范式最小能量差原则求取的匹配因子,将多次波成像结果与一次波成像结果进行匹配叠加,应用多次波成像来弥补一次波成像的不足.简单模型验证了基于单程波偏移算子的多次波成像方法的有效性,最后对Sigsbee2B模型进行了一次波与多次波联合成像试算,盐边界高陡构造成像质量得到了明显改善.  相似文献   

20.
采用弹性波全波形反演方法精确重建深部金属矿多参数模型,建模过程采用基于地震照明的反演策略.首先给出基于照明理论的观测系统可视性定义,利用可视性分析构建新的目标函数,对反演目标可视性较高的炮检对接收到的地震记录在波场匹配时占有更高的权重,确保了参与反演计算中的地震数据的有效性;其次将给定观测系统对地下介质的弹性波场照明强度作为优化因子,根据地震波在波阻抗界面处的能量分配特点,自适应补偿波场能量分布和优化速度梯度,以提高弹性波全波形反演过程的稳定性和反演结果的精度.理论模型和金属矿模型反演试验结果表明,基于可视性分析和能量补偿的反演策略可以使弹性波全波形反演更快地收敛到目标函数的全局极小值,获得适用于金属矿高分辨率地震偏移成像的多参数模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号