首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
下列情况应测量雪压 :①每月逢 5、1 0、1 5、2 0、2 5和月末最后一天 0 8时雪深≥ 5cm时 ,应在雪深观测后测雪压 ;②在规定的日子里 0 8时无积雪 ,而在 0 8时以后形成雪深≥ 5cm的积雪 ,在 1 4时或 2 0时补测雪深后测雪压 ;③在规定的日子里未达到测雪压标准 ,而在随后的其它日子 (指两次规定日子之间的日子 ) ,0 8时测得的雪深≥ 5cm时 ,应在雪深观测后补测雪压 ;④在规定的日子里未达到测雪压标准 ,在随后的日子里 0 8时也无积雪 ,而在该日 0 8时以后降雪 ,且雪深≥ 5cm ,应在该日 1 4时或 2 0时补测雪深后补测雪压 ;⑤在前一天…  相似文献   

2.
孙晓辉 《浙江气象》2007,28(4):17-19
叙述了降雪的性质与云状栏的记录对应关系;大雪引起积雪对雪深、雪压的观测、补测、发报的一些规定理解;因纯大雪引起使能见度<0.5 km时,对大雪的发报与能见度的对应关系;对降雪、积雪时的仪器维护及是否正常运转判断的一些方法。  相似文献   

3.
以新疆塔城基准站自动气象站2006年11月—2010年3月积雪深度≥0cm的451天为样本,对0cm地面温度、雪面(草面)温度、气温及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度、雪(草)面温度与气温的关系,结果显示:雪(草)面温度在积雪期,变化趋势与气温一致,受云量及日照时数影响明显,平均雪温低于平均气温;地温随雪深变化有20cm和50cm两个分界点,雪深≤20cm时,地温受雪深、气温影响较大,变化趋势与气温基本一致,地温高于气温,雪层较薄时,受云量和日照影响较明显。雪深超过20cm时,地温变幅趋向定值,地温变化仅受长时间温度变化影响,且不低于-5℃;雪深超过50cm时,地温趋于定值(-1℃)。  相似文献   

4.
常槐花 《气象》2005,31(5):87-87
在墒情观测地段有积雪存在时应如何取土测墒?据笔者调查,多数台站遇此情况是采取扒雪照常取土的方式,个别台站是等积雪融化以后采取补测取土方式。由此可见理解执行规范的不一致。笔者更赞同后一种做法,理由如下:  相似文献   

5.
王秀琴  卢新玉  王金风 《气象科技》2013,41(6):1068-1072
基于新疆昌吉州5个国家气象站2008—2010年积雪深度大于等于0 cm的实测地面温度与雪面温度,对0 cm地面温度(含最高、最低)、雪面温度(含最高、最低)及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度与雪面温度的关系,并以阜康市天池气象站2011年所有积雪日数据对关系模型作检验。结果显示:地面温度与雪面温度的关系有3个雪深分层:5 cm以下、6~40 cm和40 cm以上,积雪深度为0~5 cm时,地面温度与雪面温度差值很小,受雪深及天气条件影响明显,雪深6~40 cm,主要受雪深影响,雪深超过40 cm,地面温度趋于定值。  相似文献   

6.
徐福兴 《气象》1990,16(7):18-18
地面观测规范在地温一章中规定:地面最低温度表于每日20时观测一次。夏季高温日子里,为防止地面最低温度表失效,应在早上温度上升后观测一次,并记入观测薄08时栏,同时应收回室内。若遇雷雨天气,因可能有显著降温,应提前放回原处,以免漏测最低地温。又在规范107页无自记仪器项目中规定:2时地面温度用1/2(当日地面最  相似文献   

7.
采用2009年和2010年2月中旬雪深、分层积雪密度、含水率和温度野外调查数据,分析了北疆地区积雪参数属性特征,雪深-温度和密度-含水率关系。①雪深达10cm,雪土界面温度比积雪表面高3℃左右,超过10cm,偏高6~10℃;雪土界面温度与积雪深度高度线性相关,积雪越深,保温作用越显著;②2010年1月以来,北疆地区多降雪天气,2月积雪深度比2009年同期雪深明显增加;③2010年2月,北疆地区积雪密度均值总体范围0.15~0.272 g/cm3比2009年同期积雪密度0.087~0.225 g/cm3偏大;④在一定体积含水率间隔范围,积雪密度和体积含水率间线性相关。  相似文献   

8.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   

9.
为满足应急气象服务需求,2013 2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。  相似文献   

10.
青藏高原积雪监测在地球辐射平衡、全球气候变化和生态环境等方面有重要作用,对气候预测、雪灾预测等具有重要意义。FY-4(风云4号)卫星数据具有高时空分辨率的优势,基于FY-4A(风云4号A星)构建积雪监测方法与模型,不仅拓展了静止卫星应用领域,也丰富了积雪监测应用的手段。FY-4的高时间分辨率为积雪监测的研究提供了分钟级数据,对积雪与云的变化掌握的更为细致,但用于积雪监测的波段,因分辨率不高容易导致错判与漏判。本文基于2020年小时级野外地面雪深观测数据、风云3号D星积雪覆盖产品(FY-3D_SNC)数据,构建了基于归一化积雪指数(Normalized Difference Snow Index,NDSI)的FY-4A卫星积雪判识方法,提出了雪深监测模型与等级划分指标。结果表明:NDSI≥0.20是青藏高原地区FY-4A卫星积雪判识的适用阈值,无论有云或无云条件,其漏判率均低于8.0%。地面站点验证结果表明,积雪判识准确率达83.33%以上。空间范围内直接剔除云区后,积雪判识经混淆矩阵验证准确率在82.48%以上。因此,FY-4A卫星在青藏高原地区具有积雪监测的能力。虽然FY-4A卫星对超过10 cm以上雪深不具备区分能力,但可以较好地识别10 cm以下浅雪雪深,相关系数达到0.745,通过了0.001显著性水平检验。据此建立的FY-4A卫星0~10 cm雪深等级指标,总体分级精度达到87.50%。FY-4A卫星雪深反演方法在青藏高原地区对0~10 cm浅雪雪深有较好的估算能力。  相似文献   

11.
罗荻 《气象》1991,17(7):2-2
地面最低温度表的使用,在《规范》中规定:“在夏季高温的日子里,为防止地面最低温度表失效,应在早上温度上升后观测一次地面最低温度,记入观测薄8时栏,随后将地面最低温度表收回,并使其感应部分向下,妥善立放室内或置于阴蔽处。20时观  相似文献   

12.
利用位于三江源腹地的玉树州隆宝自然保护区野外雪深自动观测站2013/2014年冬季每30 min积雪深度与同步气温数据,对发生在2014年2月的较大降雪过程的动态融雪过程及其同步气温进行了研究分析。结果表明,玉树隆宝地区融雪过程总体表现为"先慢后快"的变化特征,积雪在10 cm以上时融雪过程相对缓慢,在10 cm以下时,积雪加速消融,积雪越薄,融雪越快;在融雪期内,雪深快速下降分别发生在10:00(北京时,下同)11:00与14:00 15:30;气温与雪深变化关系紧密,09:00以前,雪深的下降与气温的关系不明显,09:00以后气温开始对雪深的变化产生比较明显地影响,这种相关性在10:00后明显增强,热量条件对积雪消融的影响自10:30一直持续到18:00;相对而言,13:00 14:00气温对日积雪消融的贡献最大。超前滞后关系分析表明,融雪期之前240 min之内的气温都将显著影响到积雪雪深的变化;玉树隆宝地区积雪在气温-12℃时仍有积雪深度下降的现象发生,正变温对积雪消融更有利。  相似文献   

13.
从传感器测量原理、观测方法、数据处理算法等方面介绍了一种利用相位法激光测距原理测量积雪深度的雪深传感器,并参加了中国气象局于2010/2011年在黑龙江通河、新疆阿勒泰等台站开展的积雪深度对比观测试验,与超声波传感器和人工测量积雪深度进行了对比,比较了三者之间测量结果的差异。试验结果表明:这种激光雪深传感器能够适应冬季严寒和暴雪天气条件,可以连续、自动、准确的监测雪面变化过程;与超声波雪深传感器相比,激光雪深传感器测量结果更加稳定,更加接近人工观测结果;激光雪深传感器与人工测量雪深结果之间的平均误差约为,测量精度达到《地面气象观测规范》要求。  相似文献   

14.
以能量平衡方程为基础,考虑太阳短波辐射、大气和地面的长波辐射、潜热、感热传输以及下垫面的热传导等能量之间的平衡,建立了利用常规气象观测资料预测雪面温度和积雪深度变化的融雪模型。利用2009年1—3月以及2009年12月—2010年1月在湖北恩施雷达站的积雪观测数据进行模拟和验证,结果表明:该模型对于雪面温度和积雪深度都有较好的模拟效果。当下垫面导热系数λg〈0.5时,下垫面对雪深的影响很小;当λg≥0.5时,积雪融化速度随λg的增大而加快,说明下垫面的热传导是影响积雪深度变化的主要因素之一。  相似文献   

15.
利用阿尔山地区多年实测雪深数据评估3种微波遥感雪深数据,即星载微波成像仪AMSR-E(Advanced Microwave Scanning Radiometer for EOS)和AMSR-2(Advanced Microwave Scanning Radiometer 2)的积雪产品、国内学者建立的中国雪深数据集,在该地区的适用状况,并建立新的雪深反演算法。1981~2014年的中国雪深数据集和阿尔山站点实测雪深统计的积雪日数和最大积雪深度具有较好的一致性,尤其是在2000年以后。AMSR-E和AMSR2雪深数据年变化与实测雪深变化趋势一致,与实测雪深数据相关系数超过0.60,不过具体雪深数据变化幅度远高于实测数据,致使两者之间的均方根误差高达13.0 cm。中国雪深数据集在阿尔山地区与实测雪深相关系数超过0.65,两者之间均方根误差为6.3 cm。结合星载微波观测亮温与实测雪深建立适合阿尔山地区的雪深反演算法,验证分析显示反演结果与实测雪深相关系数为0.77,两者的均方根误差减小为4.7 cm,优于本文评估的3种微波遥感雪深数据。  相似文献   

16.
1 引言 在地面气象观测中,雪压的观测比较特殊,比较繁琐。冬季降雪达到观测标准时,在规定的时间内观测员必须反复操作测量工具和读数。是一个比较长的观测过程。由于观测次数少,而且每次雪深都不一样.使得雪压前后对比观测比较困难.往往会造成观测数据出现误差。在实际观测中总结经验,认为从以下几个方面人手。能保证雪压观测数据的正确性。  相似文献   

17.
根据山东省气象局观测与网络处要求,山东省各地面气象观测站在冬季遇有降水时,应在06时按规定编发06—06时降水量,出现积雪现象时还应同时编发积雪深度。为此,肥城局编写了带有编报传输功能的软件,观测员只需输入降水量、雪深两项内容,软件将自动生成规定格式的降水报。文章从软件的开发环境、软件功能、报文格式、界面设计、操作流程、注意事项等方面做了详细介绍。  相似文献   

18.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0  
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   

19.
冬季雪深再分析资料在欧亚中高纬地区的适用性评价   总被引:1,自引:0,他引:1  
欧亚中高纬地区的积雪是影响气候的重要因子,但是观测台站稀疏且记录只到1996年,导致积雪观测资料严重缺乏。基于目前国际上应用较为广泛的3套再分析资料:美国国家大气海洋局(NOAA)的20世纪再分析资料(NCAR-20th century reanalysis)、欧洲中期天气预报中心(ECMWF)的再分析资料(ERA-Interim)及日本气象厅(JMA)的全球大气再分析资料(JRA-55),利用前苏联站点观测的雪深资料评估雪深再分析资料在欧亚大陆区域的适用性。结果表明:3套再分析资料对积雪的时空变化均具有一定的描述能力;其中,尤以JRA-55再分析资料与观测事实最为接近,能较好揭示欧亚中高纬雪深变化的空间分布特征,反映雪深的长期变化趋势。JRA-55再分析资料揭示的欧亚雪深与169站观测有90%吻合,20世纪再分析资料有76%一致,而ERA-Interim再分析资料只有一半。区域尺度上,JRA-55再分析资料揭示的欧洲、西伯利亚南部雪深在1961~1990年的变化与观测是正相关,相关系数达到0.91、0.87,而20世纪再分析资料仅有0.77、0.32。长时间序列的雪深资料(JRA-55)表明欧亚大陆积雪存在年代际的变化特征:1960年代积雪偏少;1970年代偏多;从1980年代开始呈现减少趋势,持续至20世纪末,并且积雪的减少是高纬度积雪变化造成的。  相似文献   

20.
青藏高原冬春雪深分布与中国夏季降水的关系   总被引:2,自引:0,他引:2  
利用SSMR和SSM/I卫星遥感雪深反演资料,通过与高原测站雪深观测资料的对比分析,揭示了高原雪深的时空分布特征,在此基础上对积雪异常年中国夏季降水异常和大气环流进行了对比分析。结果表明,卫星遥感雪深资料可较真实反映出高原积雪的状况,并可反映出高原西部积雪的变化;高原冬、春季积雪EOF分解第1模态具有相同的空间分布,反映了高原冬、春季积雪分布具有相当的一致性,而春季积雪的第2模态则反映高原积雪的东西差异;冬、春季雪深EOF第1模态的时间序列与中国夏季降水的相关分析表明,大致以长江为界,我国东部地区呈现出南涝北旱的分布模态,春季高原东(西)部多(少)雪与东(西)部少(多)雪年的夏季,我国东部降水表现出长江以南(北)地区为大范围的降水偏多(少)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号