首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
地形起伏与降水分布不均是植被空间分布差异的主要成因。西藏自治区雅鲁藏布江流域具有显著的高程差异,研究以NDVI和相应的降水及高程数据,统计分析NDVI随高程变化的分布规律,并结合滑动t突变检验与Pearson相关分析对其分布形态进行诊断。结果表明:(1)NDVI对高程具有高度依赖性,基本呈现随高程增加而线性减小的变化规律,NDVI随高程变化的减幅约-0.000 18 m~(-1),其中3 003 m以下和5 843 m以上区域内NDVI值随高程增加呈线性下降形态,而高程在3 003~5 843 m的样点NDVI实际值偏离拟合值较大;(2)3767 m与5 051 m高程界线将月NDVI分成0.65~0.88、0.17~0.49和0.09~0.24三个值域;(3)三个高程带内植被总体可被划分为2 5月、6 9月、10月至次年1月三个生长时期;(4)高程5 051 m以上区域内NDVI总体呈增加趋势,高程3 767~5 051 m区域内NDVI于6 9月呈下降态势,其余月份均表现为增加形态,而高程3 767 m以下区域内NDVI总体为下降趋势;(5)除32%的样点NDVI主要受高程影响外,51%样点NDVI受降水影响较大(主要分布于3 003~5 843 m之间的区域,尤其是高程位于4 010 m以上的区域),二者相关系数达0.7以上;还有17%样点NDVI受其他因素控制。  相似文献   

2.
台风眼壁及周围螺旋云带云属性垂直分布研究   总被引:1,自引:0,他引:1  
选取2006—2010年间CloudSat监测到热带气旋中心的7个案例,利用CloudSat和其它A-Train卫星的反演数据,主要分析了台风眼壁及周围螺旋云带的云微物理属性的垂直分布并给出了初步的概念模型。结果表明,云中冰水分布在5 km以上高度。冰粒子等效半径随云高度增加呈减小趋势,大值区主要分布在5~10 km高度,7个热带气旋的最大值为171.7~226.6 μm;冰粒子数浓度随云高度增加呈增大趋势,大值区分布在13 km以上高度,7个热带气旋的最大值为550~2 148 个/l;冰水含量随云高度增加呈先增后减的趋势,大值区分布在8~15 km高度,7个热带气旋的最大值为986.0~4 009.0 mg/m3。云中液态水分布在0.5~9.0 km高度。液态水粒子等效半径大值区分布在3~9 km高度,7个热带气旋的最大值为19.1~29.4 μm;液态水粒子数浓度大值区分布在6 km以下高度,7个热带气旋的最大值为93~117 个/l;液态水含量大值区分布在5 km左右高度,7个热带气旋的最大值为659.0~2 029.0 mg/m3。台风或超强台风阶段,云体最大高度存在于台风眼壁,眼壁云高可达17~18 km;近地表降水率、冰水柱含量的高峰值大多存在于台风眼壁区域,其中眼壁区域的近地表降水率可超过20.0 mm/h,冰水柱含量可超过9.1 kg/m2。7个热带气旋的垂直降水率和液态水柱含量值分别小于11.3 mm/h和2.7 kg/m2。   相似文献   

3.
基于2006—2012年主要生长季(5—9月)MODIS旬最大值合成NDVI数据,结合同期气温、降水插值栅格资料,采用均值法、线性回归法、相关系数法分析了伊犁河谷地区七大不同草地类型NDVI的时空变化规律及其对气象因子响应的敏感性及滞后性。结果表明:(1)伊犁河谷草地植被NDVI整体呈微弱增加趋势,其中,温性荒漠类草地的增加趋势略高于其他几种类型。(2)温性草甸草原、温性草原、温性荒漠草原、高寒草原、低平地草甸的NDVI主要受降水影响,即NDVI与生长季平均降水量呈极显著正相关,且平均降水量每增加1 mm,其NDVI分别增加0.005、0.006、0.007、0.004、0.003。(3)不同草地类型与气温、降水存在不同的滞后响应,多数草地类型5月气温、降水与7月NDVI表现出显著相关性。其中,温性草甸草原、温性草原、温性荒漠草原NDVI受气温和降水共同影响,气温每升高1℃,NDVI分别减少0.020、0.028、0.027,降水每增加1 mm,NDVI分别增加0.002、0.003、0.003;高寒草原主要受降水影响,降水每增加1 mm,NDVI增加0.003;低平地草甸主要受气温影响,气温每升高1℃,NDVI减少0.016;温性荒漠、沼泽与气温、降水没有明显相关性。不同草地类型对水热因子的需求不同,是产生这种结果的主要原因。  相似文献   

4.
基于澜沧江流域10个气象站点1951~2012年的日降水资料的逐月标准化降水蒸散指数(SPEI)值、各站1998~2012年流域的归一化植被指数(NDVI)值,利用SPEI以及趋势分析法,多尺度分析了澜沧江流域干旱发生的时间和强度演变特征以及上中下游NDVI时间变化特征,探讨了气候变化对植被变化的影响,并对NDVI与SPEI的变化进行了相关性分析。结果表明,不同站点和不同时间尺度的SPEI值均呈现出干旱化逐年加强的线性趋势,上游相对于中下游干旱态势较轻,且时间尺度越大,干旱波动趋势越明显;在季节尺度上,夏、秋、冬的SPEI值均呈下降趋势,其中冬季干旱最为严重;15年来澜沧江流域各区域年平均NDVI总体表现为先降低后增加,总体植被状况得到改善,其中下游较明显。从年际变化看,对于流域的不同区域,NDVI与不同尺度的SPEI的相关性和滞后性有较大差异,年代际之间的响应规律也不同,中下游的SPEI对同年NDVI的响应比较敏感,而上游则表现出明显的滞后性。说明NDVI对SPEI的响应比较敏感,干旱程度的变化在一定程度上影响着流域的植被状况,SPEI是影响NDVI的因素之一。  相似文献   

5.
《高原气象》2021,40(3):547-558
基于地面气象站观测资料,采用偏差订正后的国际耦合模式比较计划第六阶段(CMIP6)中情景齐全的5个气候模式,评估气候模式对1995-2014年黄河上游降水的模拟能力,并预估了7个SSP-RCP情景下黄河上游2021-2040年(近期)、2041-2060年(中期)、2081-2100年(末期)的降水变化趋势。结果表明:(1)多模式集合平均能够较好地模拟黄河上游降水年内分布特征,并且能够模拟出黄河上游降水南多北少的空间格局,模式数据与观测值的空间相关系数达0.9以上,CMIP6多模式集合对黄河上游降水时空变化特征具有较强的模拟能力;(2)21世纪黄河上游年降水呈显著增加趋势,伴有明显的年代际波动。相比基准期(1995-2014年),SSP1-1.9和SSP1-2.6情景下21世纪黄河上游年降水呈现先增加后减缓的特征,近期到中期降水增幅加大,中期到末期降水增幅减缓;SSP2-4.5、SSP3-7.0和SSP5-8.5下,年降水增幅从近期到末期持续增加;而SSP4-3.4与SSP4-6.0下,21世纪近期降水有所下降,中期出现拐点,随后持续增加。空间上,降水增加幅度较大的区域主要集中在降水较少的黄河沿以上区域和兰州至头道拐之间的区域;(3)21世纪黄河上游各季降水总体表现为波动上升趋势,增速因情景和季节而异。除SSP4-6.0情景,总体上表现出高辐射强迫情景降水变化趋势大于低辐射强迫情景;冬季增幅最大,夏季增幅最小,趋势均通过0.1显著性水平;空间上,春秋两季降水增幅高值中心在黄河沿以上区域和兰州至头道拐之间区域,增幅低值中心在黄河沿至兰州之间;冬季降水增幅高值中心位于兰州至头道拐之间的区域,降水增幅相对较低的区域在黄河沿至兰州之间的区域;夏季降水除SSP4-3.4和SSP4-6.0情景在21世纪近期黄河上游大部较基准期有所下降外,其余情景下增幅高值区在黄河沿以上区域。  相似文献   

6.
为了确定作物长势遥感监测的评价指标,利用2000—2012年吉林省EOS/MODIS数据,采用NDVI旬最大值法,结合吉林省主要农作物生长发育的特点,对主要产粮区作物生长季旱田和水田的NDVI时空变化规律进行研究,并分析其与气温和降水的关系。结果表明:2000—2012年吉林省作物生长季农作物的NDVI随作物生长发育进程有明显的变化,水田和旱田两种作物的NDVI时间变化均呈单峰型;吉林省不同区域的NDVI变化趋势一致,5月上旬至6月上旬,NDVI呈缓慢增加的趋势;6月中旬至7月上旬,NDVI迅速增加;7月中旬至8月上旬,NDVI增加缓慢;8月中旬开始,NDVI开始下降。6月中旬开始,吉林省中部地区旱田NDVI明显高于西部地区,NDVI增长速率中部地区大于西部地区,达到峰值的时间中部地区也早于西部地区。吉林省水田NDVI变化中西部地区差异较小,均在8月上旬达到峰值,植被指数时间变化与吉林省作物生长发育进程相吻合。吉林省中西部地区作物的NDVI与气温和降水均呈正相关,气温和降水对NDVI的影响有明显滞后效应,且气温的影响大于降水。  相似文献   

7.
梅里雪山地区是中国地形起伏最大的地区之一,其气候环境复杂多变、空间分异特征显著,对区域气温和降水的系统分析有助于揭示区域内冰川变化的原因和水文循环过程。站点观测的缺乏和再分析资料的低空间分辨率是精细刻画该地区气象条件的主要制约因素。研究中首先基于有限站点观测,采用尺度因子法和月尺度的回归校正对ERA5-Land产品进行校准;然后,考虑气温和降水的海拔效应,采用Anusplin插值的方式对校准后的结果进行统计降尺度。最终获得了梅里雪山地区近30年(1990—2020年)1 km空间分辨率的气温、降水数据,并以此分析了这一地区降水、气温的时空异质性及其在不同海拔梯度上的表现特征。结果表明,区域气温以0.15℃/(10 a)的速率呈显著上升趋势,且各季节升温的幅度及分布范围各异;降水则以-41.19 mm/(10 a)的速率呈显著下降趋势,整个区域呈“变暖变干”的倾向。区域增温具有明显的海拔依赖性,海拔低于4000 m和>5000 m时,增温不随海拔变化而变化,当海拔处于4000~5000 m时,增温幅度随海拔升高而增加。区域降水也具有显著的海拔梯度效应,当海拔<5000 m时,西坡降水随海拔的升高而减少,当超过该海拔后降水随海拔升高而增加;东坡降水始终随海拔升高而增加。梅里雪山气候变化的时空分异特征是大气环流背景和复杂地理环境共同作用的结果。区域持续的变暖及降水的减少可能会进一步加重该区冰川水资源的流失。  相似文献   

8.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

9.
利用甘肃省1960~2011年逐日降水量及1984~2011年暴洪灾害的灾情资料,分析了甘肃省强降水变化特征及其对社会经济的影响。结果表明:(1)近52 a来,甘肃省降水量整体上呈逐年减少趋势,空间上由东南向西北递减;(2)河西年降水在1986年以后均匀度明显下降,而河东在20世纪70年代后期降水时间分布很不均匀、80年代后期较均匀,其它时间变化不大;河西5~9月降水在20世纪80年代后期到90年代前期分布最不均匀,河东20世纪90年代后期到21世纪初期降水不均匀性有所增加,此后逐渐减小;(3)河西西部一直是近50 a甘肃降水量分布最不均匀的地区,20世纪70年代及21世纪以来不均匀度明显较高;(4)20世纪80年代以来,甘肃河西强降水明显增加,而河东在21世纪初有短时段的增加,2008年以后又逐渐减少;(5)甘肃省暴洪灾害的频次及其造成的直接经济损失均呈增加趋势,而因暴洪灾害造成的死亡人数在减少,2009年以后略有增加。  相似文献   

10.
2008~2016年重庆地区降水时空分布特征   总被引:1,自引:0,他引:1  
利用2008~2016年国家气象信息中心提供的0.1°分辨率的中国地面与CMORPH融合逐小时降水产品,分析了重庆地区的降水时空分布特征,尤其是小时强降水的时空分布特征。结果表明:(1)年均降水量总体呈西低东高分布,大值中心位于重庆东北和东南部,且存在一定的季节性差异,特别是夏季,西部降水明显增强,总降水呈两高(西部、东部)一低(中部)的分布;降水频次、降水强度与地形的相关性较高,海拔高度较高的山区(海拔高度>1000 m)降水频次多大于盆地和丘陵区(海拔高度<1000 m),降水强度与之相反,且小时强降水多发生在迎风坡前侧的过渡区域,说明高海拔区域易出现降水,但降水强度不强,而地形抬升则是触发强降水的重要原因,导致山前降水明显大于山峰。(2)重庆地区降水主要集中在5~9月,降水量、降水强度和小时强降水频次均呈单峰型分布,峰值出现在6~7月,降水频次呈双峰型分布,一个峰值出现在5~6月,另一个峰值出现在10月,7~8月为低频期,与副高控制下的连晴高温天气有关。(3)重庆地区降水存在明显的日变化特征,降水以夜雨为主,且降水峰值出现时间表现为向东延迟的特征,重庆西部日峰值出现在凌晨02:00(北京时,下同),中部出现在清晨05:00,东北部出现在早上08:00。从不同季节来看,春季、秋季和冬季降水日变化呈单峰型分布,主要集中在清晨,而夏季受午后局地对流性天气的影响,在下午17:00左右存在一个次峰值。(4)强降水的主要集中在夏季,在空间上存在三个大值中心,受西南涡及地形的相互作用,夏季在缙云山以西的盆地区域,小时强降水频次明显较高。  相似文献   

11.
本研究建立基于MODIS的天山山区草地类型植被指数并分析其与气候因子的关系,研究发现:天山山区NDVI分布北部大,南部小;西部大,东部小。降水是影响天山山区NDVI的主要因子。天山山区在温度上升0.1℃,面雨量增加10%的情况下,NDVI增加2.5%。2000~2009年天山山区NDVI年平均值为0.35,温度呈上升趋势,降水呈减少趋势,对植被的生长不利,NDVI呈现出减小趋势,但减小不明显。天山山区NDVI最大值的年份,降水并不是最多的,说明植被的长势需要水分和热量匹配。1961~2009年天山山区的气候变化有利于草地NDVI的增加  相似文献   

12.
青藏高原植被指数最新变化特征及其与气候因子的关系   总被引:2,自引:1,他引:1  
利用GIMMS/NDVI(全球库存模拟和影像研究/归一化植被指数,Global Inventory Modeling and Mapping Studies,Normalized Difference Vegetation Index)和MODIS/NDVI遥感数据以及青藏高原6个气象代表站的站点数据,结合多种统计和计算方法,分析了青藏高原植被NDVI变化规律及其影响因子。结果表明:1982~2013年青藏高原多年平均植被NDVI的空间分布存在明显的区域差异,总体上呈从东南向西北递减的趋势,而且发现不同地区植被的时间变化规律也不尽相同。根据高原长势最好的6~9月植被NDVI进行经验正交分解,将青藏高原植被分为5个区,并进一步分析了不同分区内植被的变化规律,得出:青藏高原植被NDVI下降最明显的区域在二区的噶尔班公宽谷湖盆地地区和北羌塘高原地区,植被NDVI上升最明显的区域在四区的祁连山东部地区。为了探讨青藏高原不同分区内影响植被NDVI下降的因子,从青藏高原二区、四区、五区各选取NDVI处于下降趋势的两个代表站点。研究分析了各个站点植被NDVI与降水量、平均气温、平均最低气温、平均最高气温、日照百分率5个气象因子的关系,得出:在高原二区日照强度是其它分区的两倍左右,而降水量相对较少导致植被NDVI降低。高原四区由于降水量小、温度高、日照强,导致植被NDVI处于下降趋势;在青藏高原五区虽然降水充足,但日照较弱,限制了植被的正常成长导致NDVI处于下降趋势中;其结果为高原植被退化机制研究及高原植被对大气反馈等奠定了基础。  相似文献   

13.
利用四川省156个国家级地面观测站1981~2013年的整编观测资料,统计分析了四川省雨、雪与雨夹雪日数的年平均、月平均特征以及雨雪转换情况,并采用线性趋势法、M-K检验来对不同相态降水的时空分布及气候变化特征进行了定量分析。结果表明:(1)四川地区年平均降雪日数和雨夹雪日数呈"西多东少"型分布,年降雨日数则呈"东多西少"的分布特征;(2)盆地中部、南部雨雪转换年平均日数为0.1~2日,盆地西部丘陵一带为3~5日,川西高原雨雪转换日数在10日以上,攀枝花几乎全年无雨雪转换,凉山州呈现西少东多的形势;(3)从线性趋势法、M-K检验及突变都可以看出,四川地区不同降水相态年发生日数总体都在减少。  相似文献   

14.
利用2016—2020年暖季(5—9月)哈密市6个国家气象站及71个区域自动站逐小时降水资料,分析了降水量、降水日数及其与海拔高度的关系。结果表明:(1)哈密市暖季降水集中在6—8月,降水量(日数)以小雨最多,暴雨最少。(2)暖季平均降水量(日数)及各等级降水量(日数)均呈西北—东南向的带状分布,沿天山山脉向两侧递减;各等级降水量和降水日数的大值区在天山山脉两侧海拔较高区域,东北部以及西南部的戈壁区域降水很少,且西南部的戈壁区域未出现过暴雨。(3)暖季降水量与降水日数呈显著正相关,在2 600 m以下,海拔高度平均每升高100 m,降水量增加约12.3 mm,降水日数增加2.1 d。(4)在海拔1 000 m以上各等级降水量均存在相对偏少区,海拔2 400~<2 600 m中雨及以下降水日数最多,2 200~<2 400 m大雨及以上降水日数最多。  相似文献   

15.
青藏高原气候独特,影响高原夏季降水的原因是十分复杂的和多方面的。文中利用1982—2001年的卫星遥感植被归一化指数(NDVI)资料和青藏高原55个实测台站降水资料,应用经验正交分解(EOF)、奇异值分解(SVD)等方法分析了青藏高原冬、春植被变化特征及其与高原夏季降水的联系,得到以下几点初步认识:青藏高原冬、春季植被分布基本呈现东南地区植被覆盖较好,逐渐向西北地区减少的特征。其中高原东南部地区和高原南侧边界地区NDVI值最大,而西北地区和北侧边界地区NDVI较小。EOF分析表明,20年来冬、春季高原植被的变化趋势是总体呈阶段性增加,其中尤以高原北部、西北部(昆仑山、阿尔金山和祁连山沿线)和南部的雅鲁藏布江流域植被增加明显。由SVD方法得到的高原前期NDVI与后期降水的相关性是较稳定的。青藏高原多数区域冬、春植被与夏季降水存在较好的正相关,且这种滞后相关存在明显的区域差异。高原南部和北部区域的NDVI在冬春两季都与夏季降水有明显的正相关,即冬春季植被对夏季降水的影响较显著。而冬季高原中东部玉树地区附近区域的NDVI与夏季降水也存在较明显的负相关,即冬季中东部区域的植被变化对夏季降水的影响也较显著。由此可见,高原前期NDVI的变化特征,可以作为高原降水长期预报综合考虑的一个重要参考因子。  相似文献   

16.
秦岭山区近50 年降水差异及可能局地成因探讨   总被引:2,自引:1,他引:1  
利用秦岭山区54个气象站50年以上日降水资料,分析了复杂地形下小区域降水变化差异,探讨了可能的局地成因,结果表明:(1)年均降水量总体为南高北低、西高东低,反映出秦岭阻挡作用和山谷东风回流影响;(2)近50年来区域年降水以减为主,9个增加站位于东部,夏季降水以增加为主,减少站集中在秦岭山上和区域西部,降水向夏季集中倾向明显;(3)日雨量小于5 mm的年雨量和雨日数减少趋势明显,雨量≥50 mm的年雨量和雨日数增加趋势明显,即小雨减少大雨增多;(4)降水变化的多个方面及其与海拔高度和经度对应关系的分析结果,反映出气溶胶抑制地形降水以及成冰作用恢复被抑制降水的作用,说明局地成因中气溶胶起了不可忽视作用;(5)地形作用和区域能量平衡也是重要局地成因.  相似文献   

17.
俞剑蔚  李聪  蔡凝昊  刘梅  赵启航 《气象》2019,45(9):1288-1298
利用国家级格点实况分析资料与地面气象站实况数据,采用误差分析、技巧评分等方法评估了2017年7月至2018年6月逐时的格点实况产品在江苏地区的地面2 m气温、2 m相对湿度、10 m风和降水要素的一致性和准确性,同时采用MODE检验方法对格点降水产品空间分布偏差进行了分析。结果表明:2 m气温格点实况与自动站观测基本一致,平均绝对误差在0.5~0.8℃,均方根误差在0.8℃左右,其中日最高气温误差较小。格点实况和自动站2 m相对湿度之间的平均绝对误差在5%左右,均方根误差在6%~7%,表现出较高的准确性和稳定性。格点实况10 m风向准确率达到70%左右,而风速准确率仅为56%,与气象站点观测相比有明显差异。格点降水产品的全年有无降水准确率为90%~98%,对于晴雨检验存在带来较大影响的可能。格点实况产品对小雨级别降水的准确率最高,随着降水量级增大,格点实况降水场相比站点观测存在较多的降水漏报,因此,对于降水分量级检验还不适合用格点实况场来替代气象站点观测。设计了一种基于空间形态的降水准确率评分方法对降水空间落区进行检验,格点实况降水场的空间形态准确率评分在0.9左右,较准确地反映了实际降水空间分布。因而,格点实况数据在江苏平原地区都有较高的精度,误差在可接受的范围内,基本可以代替自动站观测作为预报和模式检验的真实实况场,但也存在以下几个方面的问题:(1)格点2 m气温、2 m相对湿度产品在江苏的丘陵地带误差较大,降水产品在海岛气象站准确性较低;(2)格点降水产品一定程度地弱化了大雨以上量级降水强度;(3)格点实况风速产品误差较大,与业务服务需求有一定差距。  相似文献   

18.
该文利用贵州省黔南州12个国家级自动气象站1989—2019年的地面降水观测资料,采用线性回归方法、Kriging法、反距离权重法、滑动t检验等方法,分析了黔南州近31 a降水的时空变化规律及突变特征,主要得出以下结论:(1)黔南州年平均降水呈东西部偏多、北部和中南部偏少的"川"字型分布,降水量有明显的增加趋势;(2)季节降水高值区围绕都匀为中心南北摆动,其中春、夏、秋3个季节降水呈增多趋势,冬季呈减少趋势;(3)月降水主要集中在4—8月,其中11月—次年4月降水为东多西少的东西向分布,5—9月为南多北少的南北向分布,10月为北多南少的南北向分布;(4)降水突变总体表现为2000年左右由减少趋势向增多趋势突变、21世纪10年代初由增多趋势向减少趋势突变。  相似文献   

19.
以吐鲁番5个国家气象站近55 a(1960—2014年)与26个区域气象站近3 a(2013—2015年)逐小时降水资料为基础,利用Pearson相关分析、气候倾向率、Mann-Kendall突变分析、Morlet小波分析等方法,分析了吐鲁番地区暖季降水时空分布特征,并就地形对吐鲁番降水的影响进行了量化研究。结果表明:在新疆趋暖趋湿的气候背景下,吐鲁番盆地平原区和山区存在截然不同的降水时空变化特征,吐鲁番地区降水高度集中在暖季,且暖季山区降水集中度和稳定性更好;暖季盆地内存在频率55%的夜雨区和昼雨区,盆地西南坡地和腹地平原区为夜雨区,盆地北部天山山区降水则集中在午后,海拔高度大约每增加(减少)300 m,降水集中时段提前(延后)1 h。研究还表明,吐鲁番降水与地形关系密切,海拔高度是影响吐鲁番降水的决定性因素,其暖季降水量、降水时数均与海拔高度呈显著正相关,降水量增加的主要原因是降水时数随海拔高度的递增;降水量随海拔高度的变化呈二次曲线型,其最大降水高度为1900 m;在最大降水高度以下,降水量由盆地腹地的平原区向山区递增,降水垂直变率平均为6.2 mm/100 m,其中1500~1900 m高度是降水量与降水垂直变率最大的区域,降水垂直变率达20 mm/100 m。  相似文献   

20.
利用2007~2012年5~9月四川省3079个观测站的分钟级降水资料,并结合SRTM(Shuttle Radar Topography Mission)提供的分辨率为90m的地形高程数据,采用统计分析方法,分析了四川省区域暴雨过程中短时强降水的时空分布特征。结果表明:(1)四川省区域暴雨过程中短时强降水主要出现在盆地的三个区域:雅安-乐山-眉山地区、遂宁-资阳地区、绵阳-广元-巴中地区。(2)强降水过程主要发生在后半夜到凌晨(01~08时),不同区域的强降水过程具有各自明显的日变化特征。(3)可以用3mm/10min的标准线来区分四川盆地强降水过程与非强降水过程。短时强降水过程降水率一般为3~6mm/10min,地形对短时强降水率的整体分布影响不大,但是对降水率的极端值影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号