首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Features associated with the upper limit of convection, observed by turbulence probes supported by a tethered kite balloon and by high-power Doppler radar, are described. The observations illustrate the interaction of thermal plumes with the capping inversion (and stable air aloft) and confirm the existence of non-turbulent, intermittently turbulent and fully turbulent layers. Evidence is presented for entrainment processes occurring on scales ranging from a few metres to several hundred metres. Individual distortions of the inversion interface, tracked by the radar, have a lifetime of about 5 minutes. Other, larger scale (i.e., > 1 km) perturbations of the top of the boundary layer were observed over longer periods, and are thought to be due to topographical effects.Now at the Meteorological Office, Bracknell, U.K.  相似文献   

2.
High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0.2 to 0.7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.  相似文献   

3.
This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.  相似文献   

4.
对基于雷达反射率因子观测数据的层状云降水粒子谱参数反演算法进行研究。(1)给出层状云降水粒子谱参数的反演理论和反演算法流程;(2)选取吉林省伊通县的一次降水层状云过程进行反演试验和验证分析,利用雷达反射率因子观测数据反演得到雨滴平均直径和数浓度参数,并用放置在伊通县气象局观测场中的Parsivel激光雨滴谱仪的实测数据与近地层反演结果进行对比。结果发现,通过反演算法计算得到的滴谱与实测滴谱的变化趋势基本相同,而且反演的雨滴平均直径和数浓度在量级和数值上的大小与实测数据具有良好的一致性,说明该反演方法用于从现有天气雷达回波强度数据中挖掘出降水性层状云的微物理参数是可行的。   相似文献   

5.
An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers.Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time.The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.  相似文献   

6.
The effects of an air-temperature inversion in the atmosphere and a seawater density jump in the ocean on the structure of the atmospheric and oceanic boundary layers are studied by use of a coupled model. The numerical model consists of a closed system of equations for velocities, turbulent kinetic energy, turbulent exchange coefficient, local turbulent length scale, and stratification expressions for both air and sea boundary layers. The effects of the temperature inversion and the density jump are incorporated into the equations of turbulent kinetic energy of the atmosphere and ocean by a parameterization. A series of numerical experiments was conducted to determine the effects of various strengths of the inversion layer and surface heat fluxes in the atmosphere and of the density-jump layer in the ocean on the structure of the interacting boundary layers.The numerical results show that the temperature inversion in the atmosphere and density jump in the ocean have strong influences on turbulent structure [especially on the turbulent exchange coefficient (TEC) and turbulent kinetic energy (TKE)] and on air-sea interaction characteristics. Maxima of TKE and TEC strongly decrease with increasing strength of the inversion layer, and they disappear for strong inversions in the atmosphere. Certain strengths (density differences between the upper and the lower layers) of the density-jump layer in the ocean (2 0.1 g/cm3) produce double maxima in TEC-profiles and TKE-profiles in the ocean. The magnitudes of air-sea interaction characteristics such as geostrophic drag coefficient, and surface drift current increase with increasing strength of the density-jump layer in the ocean. The density-jump layer plays the role of a barrier that limits vertical mixing in the ocean. The numerical results agree well with available observed data and accepted quantitive understanding of the influences of a temperature inversion layer and a density-jump layer on the interacting atmospheric and oceanic boundary layers.  相似文献   

7.
On 11 August 1999, a near-total solar eclipse (80%) was observed in Campistrous, France. The influence of this particular event on the atmospheric boundary layer was observed with a UHF-RASS radar, a sodar and an instrumented mast. The changes in turbulence intensity, radar reflectivity, and temperature on the radiative budget are described in relation to collocated ground meteorological data. The impact of the eclipse induces a clear response of the atmosphere, with a time lag of 15 to 30 min, perceptible in several mean and turbulent meteorological variables up to the top of the atmospheric boundary layer.  相似文献   

8.
In an inversion-capped planetary boundary layer (PBL), the structure of the turbulent fluxes as well as the height of the inversion are determined by the interaction of turbulent mixing in the PBL, large-scale subsidence above the PBL and radiational cooling. Here the sensitivity of the inversion height and of the turbulent fluxes due to radiational processes is investigated with the aid of a three-layered model for a well mixed PBL. For an example of the Trade-Wind region, the inversion height (i.e., the difference between surface pressure and pressure at the inversion level) varies between 46 and 257 mb and the surface flux of moist static energy between 417 and 99 W m-2, if the (mean) radiative net flux divergence for both the inversion and the well-mixed layer is changed over a reasonable range of values. None of the parameterization schemes existing in the literature is able to describe these radiational effects in an appropriate way. This is due to the fact that these parameterizations are either not or not flexibly enough linked to the thermodynamical model parameter. Therefore the demand for an adequate parameterization of the radiational influence in a well-mixed PBL under a subsidence inversion is obvious.  相似文献   

9.
Summary Problems of turbulent dissipation of a cold air lake (CAL) and the inversion layer bordering CAL on the upper boundary are presented and studied with the compound model. In wintertime such cold air lakes can persist for days even if rather strong winds are blowing above them. The required conditions for CAL dissipation are removed processes of its formation or maintenance, as well as a sufficiently strong invasion of turbulence in the inversion layer from above down-wards. By this, the inversion layer at first becomes stronger and dissipation is stopped, until the increase of turbulent kinetic energy of the upper flow enables further dissipation. Such turbulent dissipation process is shown by the model for typical conditions and for different initial values of the relevent variables.With 6 Figures  相似文献   

10.
Simultaneous lidar and FM-CW (frequency modulated-continuous wave) radar observations are presented and both common and different features observed with the two remote sensors are described. Among the common features are Kelvin-Helmholtz (K-H) waves and turbulent structures. The potential of the FM-CW radar as a meteorological tool for aiding fog dissipation forecasts is illustrated. The data also indicate that the radar often detects echoes from height regions which coincide with cloud tops. A new FM-CW radar sounder is described which incorporates scanning capability and which is fully mobile. Examples of recent observations are presented illustrating the capabilities of this second generation radar sounder.Future applications of the FM-CW radar sounder, such as investigations of the exact nature of the mechanism responsible for the radar returns, require accurate calibration of the radar sounder. It is shown that resolution and sensitivity of a linear frequency-modulated FM-CW radar depend on the time delay of the signal. Range dependency on resolution and sensitivity is calculated for various periodic and stochastic perturbations in a linear modulation and good agreement is found between calculated and measured values.  相似文献   

11.
A vertically pointed FM-CW radar was used to monitor the Pacific Trade-Wind Inversion in the Hawaiian Islands during the summer of 1971. An instrumented aircraft was used forin situ measurements of radio refractivity and temperature. The correspondence between the position of the radar returns and the aircraft data was excellent. The strong returns seen by the radar were due chiefly to the strong lapse of humidity across the inversion.The radar indicated that over the island of Lanai the trade-wind inversion was highly variable both in position and intensity. At times the layer would move from above 2 km to less than 1 km in the space of five minutes associated with strong mechanical turbulence. Its thickness would change rapidly from tens of meters to hundreds of meters. Wave-like structure induced by the mountains on the east side were observed by the radar.Our analysis indicates that interpretation ofin situ aircraft measurements may be greatly aided by using the FM-CW radar as a guide.  相似文献   

12.
While the importance of baroclinicity in determining the structure of the planetary boundary layer (PBL) is well recognized, the actual effect of baroclinicity on the structure is not well understood. Results based on simulations obtained using the turbulent kinetic energy-dissipation rate of turbulent kinetic energy closure model of the turbulent flow in a neutral baroclinic PBL provide additional insight into the role of baroclinicity. The baroclinic PBL is characterized by significant shear production of turbulent kinetic energy throughout the complete boundary-layer depth. The turbulent mixing length is bounded by the presence of a stable temperature inversion layer indicating that the depth of the baroclinic PBL is determined by the inversion height. Significant turbulent shear stresses exist throughout the baroclinic PBL and the air is relatively well-mixed except in the surface layer.  相似文献   

13.
A study has been made of the effects of varying the (uniform) grid resolution of a one-dimensional finite-difference numerical model of the dry convective boundary layer. The resolution of the inversion at the top of the boundary layer, and representation of the entrainment at the inversion, are found to influence the development of the momentum and buoyancy flux profiles. The modelled change in potential energy in a developing mixed layer is used to define a mixed layer scale, h m, which is found to vary systematically with resolution. The discretization errors (which can be large for resolutions poorer than a few tens of metres, particularly in the early stages of mixed-layer development) are quantified.  相似文献   

14.
Several features of the maintenance of breaking gravity waves and turbulence in a marine inversion are examined. A formulation is proposed for a critical Richardson number based on a mutual response of the mean and turbulent states to a wave-like disturbance. The energy balance, based on averaged aircraft soundings, is examined to ascertain the order of magnitude of the component terms in the vicinity of a contemporaneous radar echo. Some physical mechanisms are discussed which may explain some aspects of the sustained existence of the echo layers.After preparation of this paper, a considerable number of pertinent and up-dated results bearing on waves and turbulence in stable layers were published as Volume 4 ofBoundary-Layer Meteorology, April 1973. The present discussion should be considered in relation to these papers and of Gossardet al. (1973) and Metcalf and Atlas (1973) in particular.  相似文献   

15.
The high-power Defford radar has been upgraded to provide Doppler information regarding the motion of echoes from weak refractive index inhomogeneities within the optically clear atmosphere. A case study is presented in which data from the radar are used to derive the detailed velocity structure in and above the planetary boundary layer. These data are analysed to show how convective circulations in the boundary layer can perturb the height of a shallow inversion overlying it, thereby producing local enhancements of wind shear and a decrease in dynamic stability within the inversion. The measurements were obtained as part of a Boundary-Layer Project in which simultaneous measurements were made using fast-response instruments suspended from a tethered balloon within the region scanned by the radar. The balloon-borne probes showed that the most intense turbulence and fluctuations of temperature and refractivity were encountered when radar-detected hummocks in the height of the inversion were advected through the probes. The fine-scale turbulence measurements within the perturbed inversion are consistent with the existence of Kelvin-Helmholtz billows.  相似文献   

16.
云对地基微波辐射计反演湿度廓线的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
利用中国气象局大气探测试验基地的L波段探空数据和微波辐射计观测数据,采用MonoRTM辐射传输模型作为正演亮温模型,BP (back propagation) 神经网络作为反演工具,在由亮温反演大气湿度廓线的过程中,添加与样本匹配的云底高度和云厚度信息,建立新的反演模型,使新反演模型得到的反演湿度廓线和未添加云信息的反演湿度廓线分别与探空数据进行对比,获取两种反演方法各高度层的均方根误差,分析云信息对反演大气湿度廓线的影响。对比结果表明:未添加云信息时,测试样本的反演湿度廓线与探空廓线的相关系数平均值为0.685,而添加云信息后,相关系数平均值为0.805。相比未添加云信息的反演廓线,添加云信息之后多数高度层的均方根误差均有不同程度减小,而在有云以上高度层表现尤为明显。  相似文献   

17.
A primary climate change signal in the central Arctic is the melting of sea ice. This is dependent on the interplay between the atmosphere and the sea ice, which is critically dependent on the exchange of momentum, heat and moisture at the surface. In assessing the realism of climate change scenarios it is vital to know the quality by which these exchanges are modelled in climate simulations. Six state-of-the-art regional-climate models are run for one year in the western Arctic, on a common domain that encompasses the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment ice-drift track. Surface variables, surface fluxes and the vertical structure of the lower troposphere are evaluated using data from the SHEBA experiment. All the models are driven by the same lateral boundary conditions, sea-ice fraction and sea and sea-ice surface temperatures. Surface pressure, near-surface air temperature, specific humidity and wind speed agree well with observations, with a falling degree of accuracy in that order. Wind speeds have systematic biases in some models, by as much as a few metres per second. The surface radiation fluxes are also surprisingly accurate, given the complexity of the problem. The turbulent momentum flux is acceptable, on average, in most models, but the turbulent heat fluxes are, however, mostly unreliable. Their correlation with observed fluxes is, in principle, insignificant, and they accumulate over a year to values an order of magnitude larger than observed. Typical instantaneous errors are easily of the same order of magnitude as the observed net atmospheric heat flux. In the light of the sensitivity of the atmosphere–ice interaction to errors in these fluxes, the ice-melt in climate change scenarios must be viewed with considerable caution.  相似文献   

18.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

19.
Refractivity depends on meteorological parameters such as temperature and water vapour pressure and can be measured using a weather radar. A realistic atmospheric simulation from the Meso-NH numerical model is used in order to describe and establish the relation between refractivity and the dynamic and thermodynamic phenomena responsible for the development and propagation of convection. These investigations lead to discussion of the complementarity between the refractivity and the convective available potential energy. The relation observed between the refractivity signal and the meteorological parameters calls the refractivity measurement into question, since it is based on phase differentiation with time and space and can be degraded by phase aliasing problems. These aliasing problems increase with the radar frequency (perceptible in the S-band, serious in the C-band, and more serious in the X-band) and also with the integration range and sampling time. Thus, a statistical approach permits us to simulate the possibility of measuring the refractivity with operational radar during convective events. A typical case in the south-east region of France is selected to simulate measurements by radar (S-band, C-band, X-band) in convective systems, in order to evaluate the measurement feasibility, particularly in terms of phase ambiguity, related to temporal and spatial sampling, of a future implementation of the refractivity measurement over the French operational radar network. This numerical statistical approach is completed with a similar study using in-situ measurements performed at the Trappes station. The seasonal and diurnal dependencies of aliasing are investigated, leading to clarification of the impact of the turbulent fluxes on the refractivity measurement.  相似文献   

20.
许吟隆  陈长和 《气象学报》1993,51(4):465-472
本文提出了一种基于湍流扩散统计理论的利用声雷达回波图估算大气扩散参数的新方法。这种新方法,仅需要从声雷达回波图上读出边界层结构的信息并取得常规地面测风资料,即可利用参数化公式进行计算,不需进行Pasquill稳定度分类。 所应用的参数化公式用外场观测资料进行了检验,表明公式计算结果与观测值比较符合。这种方法计算得到的扩散参数也与P-G扩散曲线进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号