首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
 A systematic comparison of observed and modeled atmospheric surface heat and momentum fluxes related to sea surface temperature (SST) variability on interannual time scales in the tropical Pacific is conducted. This is done to examine the ability of atmospheric general circulation models (AGCMs) in the Atmospheric Model Intercomparison Project (AMIP) to simulate the surface fluxes important for driving the ocean on interannual time scales. In order to estimate the model and observed response to such SST variability, various regression calculations are made between a time series representing observed ENSO SST variability in the tropical Pacific and the resulting surface flux anomalies. The models exhibit a range of differences from the observations. Overall the zonal wind stress anomalies are most accurately simulated while the solar radiation anomalies are the least accurately depicted. The deficiencies in the solar radiation are closely related to errors in cloudiness. The total heat flux shows some cancellation of the errors in its components particularly in the central Pacific. The performance of the GCMs in simulating the surface flux anomalies seems to be resolution dependent and low-resolution models tend to exhibit weaker flux responses. The simulated responses in the western Pacific are more variable than those of the central and eastern Pacific but in the west the observed estimates are less robust as well. Further improvements in atmospheric GCM flux simulation through better physical parametrization is clearly required if such models are to be used to their full potential in coupled modeling and climate forecasting. Received: 24 August 1999 / Accepted: 11 September 2000  相似文献   

2.
Summary The January anomaly time series for each term of the surface heat budget (solar and longwave radiation, sensible and latent heat fluxes) are calculated for Ocean Weather Stations (OWSs) in the North Pacific and North Atlantic Oceans. The data set used is the Comprehensive Ocean-Atmosphere Data Set (COADS). The dominant term is the latent heat flux. The results for OWS P in the northern North Pacific show that the interannual variability of the heat budget parameters is correlated with the synoptic variability of the Aleutian low. There is also an interdecadal signal present in the heat budget anomaly time series, with the sign of the anomaly persisting for about 8–10 years. In contrast, for OWS J in the northern North Atlantic, no correlation is found between the variability of the heat budget parameters and the corresponding synoptic variability of the Icelandic low. The station J air-sea heat fluxes also show a higher frequency variability, compared to those of station P. The results suggest the variability of the January air-sea heat exchange processes are fundamentally different over the two ocean basins.With 3 Figures  相似文献   

3.
The analysis of 3-hourly time-series data on surface meteorological parameters collected at 20° N, 89° E in the head of the Bay of Bengal during the southwest monsoon period (18 August–19 September) of 1990 under the MONTBLEX-90 programme reveals considerable temporal variability in sea-level pressure, sea-surface temperature (SST) and the fluxes of heat and momentum at the air-sea interface. This variability is related closely to the north-south movement of the monsoon trough and the formation and development of synoptic weather systems during this period. A rapid increase in wind speed, cloudiness, instability, momentum flux, sensible heat flux and moisture flux (by 80 Wm-2), and a decrease of SST (by 0.3 °C) and net surface heat flux by 80 Wm-2, was associated with the development of a depression when the monsoon trough moved southwards. At the peak of the depression, values of the latent heat flux and evaporation reached up to 270 Wm-2 and 1.0 cm day-1 respectively. During the depression period the heat loss across the air-sea interface matched well with the heat loss in the upper (100 m) ocean. With the northward movement of the monsoon trough, the momentum and surface heat fluxes decreased rapidly while the sea surface gained heat energy at rates up to 195 Wm-2.  相似文献   

4.
南海夏季风爆发前后海-气界面热交换特征   总被引:20,自引:1,他引:20  
文中利用 2 0 0 0与 2 0 0 2年二次南海海 气通量观测资料和同期西沙站资料 ,研究了南海夏季风爆发前后海洋表面热收支变化特征。研究表明 :南海夏季风爆发前后 ,影响海面热收支变化的主要分量是净短波辐射通量和潜热通量 ,在季风爆发前后不同阶段 ,二个分量的变化有不同表现形式 ,但不论二者如何变化 ,季风爆发与活跃期 ,海面热收入减小或为净支出 ;季风爆发前及中断期间 ,海面热收入逐渐增加 ;由于大的热惯性 ,海温变化落后于海面热收支的变化 ,海温的这种滞后效应通过影响潜热通量调节海面热收支的变化 ,又反过来影响自身的变化 ,形成短期振荡过程 ,这种振荡过程与季风的活跃、中断过程相对应。  相似文献   

5.
Feedback Mechanisms For The Atmosphere And Ocean Surface   总被引:4,自引:0,他引:4  
Two kinds of feedback mechanisms in the coupling process between the atmosphere and ocean surface are identified in this paper. One is a negative feedback mechanism, which is effective in the dynamic interaction processes through momentum flux exchange. In this mechanism,the ocean extracts momentum from the atmosphere as a forcing field to generate waves, which decelerates atmospheric motions, lessening the intensity of synoptic systems. The second is a positive feedback mechanism, which is effective in the thermal interaction processes through heat flux exchange. This is a mechanism that is effective in the transport of sensible and latent heat fluxes to the atmosphere from the underlyingocean surface. As a result, the atmosphere obtains energy from the ocean, which intensifies atmospheric motions. For storm conditions typical of North Atlantic mid-latitudes, we consider these thermal and dynamical nteractions, the dominance of one over the other, and related implications for storm intensification.  相似文献   

6.
植被覆盖异常变化影响陆面状况的数值模拟   总被引:15,自引:2,他引:15  
利用NCAR最新的公用陆面模式CLM3.0,通过数值模拟初步研究了植被叶面积指数(LAI,leafareaindex)异常变化对陆面状况的可能影响,结果表明,植被LAI的异常变化能够引起地表能量平衡、地表水循环等陆面状况的异常。(1)植被LAI的异常变化主要影响太阳辐射在植被与地表之间的分配,以及地表的感热、潜热通量。植被LAI增大,能够引起植被吸收的太阳辐射增加,而到达土壤表面的太阳辐射减小,并导致植被的蒸发、蒸腾潜热通量增加,造成地表的蒸发潜热和感热通量不同程度的减小。(2)植被LAI增大时,植被对降水的拦截和植被叶面的蒸发增大,植被的蒸腾作用也明显增强;植被LAI增加会使得热带地区各个季节的土壤表面蒸发、地表径流减小,而土壤湿度有所增加;LAI增加造成中高纬度地区土壤蒸发的减少主要出现在夏季;LAI增加还能够引起中高纬地区冬、春积雪深度不同程度的增加,造成春末、夏初地表径流的增加。(3)植被LAI增加能够使得叶面和土壤温度有所下降,但植被LAI的变化对叶面、土壤温度的影响相对较小。  相似文献   

7.
Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Niño signal. The first nonseasonal EOFs of SST and solar flux exhibit El Niño characteristics with the solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Niño mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics.  相似文献   

8.
本文根据TOGA研究计划第1,2,3,8个航次考察结果,计算了热带西太平洋海-气热量交换值。研究结果表明:在热带气旋环流内海-气界面热量交换非常强烈,在双子台风环流内Qk出现负值,在台风环流内Qe也出现减弱现象。1986/1987年ElNino事件发生后,热带中太平洋水温异常增暖,热带西太平洋西部洋域表层水也在增暖,但是,热带西太平洋洋域海-气界面间热量交换反而减弱。西风爆发首先出现在中太平洋热带洋域,然后逐渐往西扩展。  相似文献   

9.
青藏高原地理环境复杂,已有大气陆面-边界层研究工作多集中于不同下垫面,很少有对复杂地形区的研究。本文利用青藏高原东南部林芝地区2013年5月20日至7月9日四个野外试验站点的观测资料,分析了不同天气条件下,高原复杂地形区不同下垫面的陆-气能量交换特征。结果表明:在各站向下短波辐射基本一致的情况下,地形较陡的北坡阔叶林站感热通量远大于其他3个站点;下垫面植被覆盖最多的南面麦田站潜热通量最大。各站能量通量有明显的日变化特征,晴天时,感热通量和净辐射明显大于阴雨天,而潜热通量随天气状况变化不大。青藏高原复杂地形环境比不同天气条件对于感热通量的影响更显著;不同地形阴雨天时对于潜热通量有明显的影响。当南亚季风槽前的西南暖湿气流影响到林芝地区时,该地区以阴雨天为主,反之则以晴天为主。林芝地区地-气通量的月内变化明显受南亚季风活动的影响。  相似文献   

10.
The effect of the high frequency (synoptic) variability of wind and heat fluxes upon the surface ocean off south-central Chile (west coast of South America) is investigated using a regional ocean model. We focus our analysis in austral summer, when the regional wind experiences significant day-to-day variability superimposed on a mean, upwelling favorable flow. To evaluate the nature and magnitude of these effects, we performed three identical simulations except for the surface forcing: the climatological run, with long-term monthly mean wind-stresses and heat fluxes; the wind-synoptic run, with daily wind stresses and climatological heat fluxes; and the full-synoptic run, with daily wind-stresses and daily fluxes. The mean currents and surface geostrophic EKE fields show no major differences between simulations, and agree well with those observed in this ocean area. Nevertheless, substantially more ageostrophic EKE is found in the simulations which include synoptic variability of wind-stresses, impacting the total surface EKE and diffusivities, particularly south of Punta Lavapie (37° S), where the lack of major currents implies low levels of geostrophic EKE. Summer mean SSTs are similar in all simulations and agree with observations, but SST variability along the coast is larger in the runs including wind-stress synoptic variability, suggesting a rather linear response of the ocean to cycles of southerly wind strengthening and relaxation. We found that coastal SST variability does not change significantly in the first tenths of kilometers from the shore when including daily heat fluxes, highlighting the prominent role of wind-driven upwelling cycles. In contrast, in the offshore region situated beyond the 50 km coastal strip, it is necessary to include synoptic variability in the heat fluxes to account for a realistic SST variability.  相似文献   

11.
Temporal variations in heat fluxes over a central European city centre   总被引:3,自引:0,他引:3  
Summary Energy fluxes have been measured over an area near the centre of the city of Łódź, Poland, since November 2000. The site was selected because the building style (surface cover and morphology) is typical of European cities, yet distinct from the majority of cities where energy balance observations have been studied thus far. The multi-year dataset permits consideration of temporal changes in energy balance partitioning over a wide range of seasonal and synoptic conditions and of the role of heat storage and anthropogenic fluxes in the energy balance. Partitioning of net radiation into the turbulent fluxes is consistent in the two years, with the largest differences occurring due to differing precipitation. The monthly ensemble diurnal cycles of the turbulent fluxes over the two years are similar. The largest differences occur during the July–September period, and are attributable to greater net radiation and lower rainfall in 2002. The latent heat flux accounts for approximately 40% of the turbulent heat transfer on an annual basis. The average daily daytime Bowen ratio and its variability are slightly reduced during the summer (growing) season. Anthropogenic heat is a significant input to the urban energy balance in the winter. The fluxes observed in this study are consistent with results from other urban sites.  相似文献   

12.
Because the atmosphere and ocean are interacting systems, it is inappropriate to specify sea surface temperature when dealing with the atmosphere, or atmospheric anemometer level temperature and moisture when dealing with the ocean. All of these quantities should be determined interactively in terms of the external forcing: the solar constant.In the tropics, it is shown that the (cumulus) convective processes may be described by a one-dimensional cloud model. The near-surface ocean may similarly be described by a one-dimensional mixed-layer model. The coupling is achieved through a sea surface flux budget combined with the flux parameterizations implied by Monin-Obukhov similarity theory.The coupled one-dimensional atmosphere-ocean model is applied to the equilibrium situation in which all temperatures reach a steady state. Since the ocean, lacking an internal heating or cooling mechanism, can only be heated or cooled through sensibleheat fluxes through the sea surface, in equilibrium these fluxes must vanish. The atmosphere, however, maintains a stable lapse rate by balancing cumulonimbus heating against net radiative cooling. All water precipitated from cumulonimbus clouds must have evaporated from sea surface. It is shown that this equilibrium system is closed and determinable solely in terms of the solar constant.For various values of the solar constant, the sea surface temperature, the flux of latent and sensible heat from the surface, the height of the tropopause, mixed layer, and trade inversion layer, and generally, the entire vertical structure of the tropical atmosphere and near-surface ocean can be determined. The equilibrium sea surface temperature is shown to be relatively insensitive to changes in the solar constant, additional solar flux being compensated mainly by additional evaporation. Finally, the usefulness and limitations of the model are pointed out.  相似文献   

13.
Wind and temperature measurements from within and above a deep urban canyon (height/width = 2.1) were used to examine the thermal structure of air within the canyon, exchange of heat with the overlying atmosphere, and the possible impacts of surface heating on within-canyon air flow. Measurements were made over a range of seasons and primarily analysed for sunny days. This allowed the study of temperature differences between opposing canyon walls and between wall and air of more than 15°C in summer. The wall temperature patterns follow those of incoming solar radiation loading with a secondary daytime effect from the longwave exchange between the walls. In winter, the canyon walls receive little direct solar radiation, and temperature differences are largely due to anthropogenic heating of the building interiors. Cool air from aloft and heated air from canyon walls is shown to circulate within the canyon under cross-canyon flow. Roofs and some portions of walls heat up rapidly on clear days and have a large influence on heat fluxes and the temperature field. The magnitude and direction of the measured turbulent heat flux also depend strongly on the direction of flow relative to surface heating. However, these spatial differences are smoothed by the shear layer at the canyon top. Buoyancy effects from the heated walls were not seen to have as large an impact on the measured flow field as has been shown in numerical experiments. At night canyon walls are shown to be the source of positive sensible heat fluxes. The measurements show that materials and their location, as well as geometry, play a role in regulating the heat exchange between the urban surface and atmosphere.  相似文献   

14.
Wang  Zhenzhen  Wu  Renguang 《Climate Dynamics》2021,56(11):3995-4012

A region of low sea surface temperature (SST) extends southward in the central part of southern South China Sea during boreal winter, which is called the South China Sea cold tongue (SCS CT). The present study investigates the factors of interannual variation of SST in the SCS CT region and explores the individual and combined impacts of El Niño-Southern Oscillation (ENSO) and East Asian winter monsoon (EAWM) on the SCS CT intensity. During years with ENSO alone or with co-existing ENSO and anomalous EAWM, shortwave radiation and ocean horizontal advection play major roles in the interannual variation of the SCS CT intensity. Ocean advection contributes largely to the SST change in the region southeast of Vietnam. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux has a major role and shortwave radiation is secondary to the EAWM-induced change of the SCS CT intensity, whereas the role of ocean horizontal advection is relatively small. The above differences in the roles of ocean advection and latent heat flux are associated with the distribution of low level wind anomalies. In anomalous CT years with ENSO, low level anomalous cyclone/anticyclone-related wind speed change leads to latent heat flux anomalies with effects opposite to shortwave radiation. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux anomalies are large as anomalous winds are aligned with climatological winds.

  相似文献   

15.
2°×2° mean monthly COADS grid data in 1974 and 1987 of E1 Nino and La Nina years are used to compute thesensible and latent heat fluxes,the net longwave radiation,the incident solar radiation and heat budget on the tropicalPacific surface(30°S—30°N).The difference of the heat budget between El Nino and La Nina mainly occurred on theequatorial ocean surface,especially the water area west of Ecuador and Peru.During El Nino,the sensible and latentheat exchange increased,the net longwave radiation and incident solar radiation decreased and the net gain(loss) of heatreduced(increased) on the ocean surface.During La Nina,the circumstances were opposite.Finally an ideal model ofair-sea heat exchange mechanism for the El Nino-La Nina cycle is summarized. Key words:El Nino,La Nina,air-sea heat exchange,COADS grid data  相似文献   

16.
An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.  相似文献   

17.
Land-surface heterogeneity effects on the subgrid scale of regional climate and numerical weather prediction models are of vital interest for the energy and mass exchange between the surface and the atmospheric boundary layer. High-resolution numerical model simulations can be used to quantify these effects, and are a tool used to obtain area-averaged surface fluxes over heterogeneous land surfaces. We present high-resolution model simulations for the LITFASS area near Berlin during the LITFASS-2003 experiment, which were carried out using the non-hydrostatic model FOOT3DK of the University of Köln with horizontal resolutions of 1 km and 250 m. The LITFASS-2003 experimental dataset is used for comparison. The screen level quantities show good quality for the simulated pressure, temperature, humidity and wind speed and direction. Averaged over the four week experimental period, simulated surface energy fluxes at land stations show a small bias for the turbulent heat fluxes and an underestimation of the net radiation caused by excessive cloudiness in the simulations. For eight selected days with low cloud amounts, the net radiation bias is close to zero, but the sensible heat flux shows a strong positive bias. Large differences are found for latent heat fluxes over a lake, which are partly due to local effects on the measurements, but an additional problem seems to be the overestimation of the turbulent exchange under stable conditions in the daytime internal boundary layer over the lake. In the area average over the LITFASS area of 20 ×  20 km2, again a strong positive bias of 70 W m?2 for the sensible heat is present. For the low soil moisture conditions during June 2003, the simulation of the turbulent heat fluxes is sensitive to variations in the soil type and its hydrological properties. Under these conditions, the supply of ground water to the lowest soil layer should be accounted for. Different area-averaging methods are tested. The experimental set-up of the LITFASS-2003 experiment is found to be well suited for the computation of area-averaged turbulent heat fluxes.  相似文献   

18.
观测事实显示,在E1 Ni(?)o发生期间,伴随着赤道中东太平洋的增暖,中纬度北大平洋中部表层海温(SST)常出现冷距平,而北美大陆西海岸SST则出现暖距平。借助观测资料分析和海气耦合模式模拟两种手段,检验了北太平洋对ENSO事件的上述响应。观测证据和数值模拟都支持有关学者提出的“大气桥”概念,即大气对赤道中东太平洋SST异常增暖的响应,随后强迫中纬度北太平洋,并导致那里SST的变冷,从而起到了连接热带和热带外特别是中纬度北太平洋的“桥梁”的作用。关于其机制,本文认为主要是海洋对大气强迫的动力响应导致那里的SST变冷,尽管潜热通量的贡献也很显著。至少模式结果证明短波辐射、长波辐射和感热通量的贡献都是次要的。进一步的分析揭示,北太平洋存在着线性独立于ENSO事件的所谓“北太平洋模态”,在空间型上,它和线性地依赖于ENSO事件的模态非常相近,即它们的纬向结构都呈现出扁平的“双极”型,只是彼此间SST距平极大值的中心位置不同。模拟结果表明,北太平洋模态与大气的耦合作用,主要是通过海气热通量交换实现的,其中短波辐射和长波辐射的作用居主导地位,而潜热通量的贡献则基本可以忽略。  相似文献   

19.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   

20.
海洋对大气加热场的区域性年变化特征   总被引:1,自引:0,他引:1  
本文研究了热带和中纬度一些海表面温度年变化较强的区域中海洋对大气加热场的年度化特征。结果表明海洋向大气提供热通量的强度在冷海区呈年周期性变化,而在暖海区呈半年周期性变化。与潜热的湍流输送及海表面向上的长波辐射通量相比,感热的湍流输送量很小。在暖海区潜热输送总大于长波辐射,并且前者有较强的年变化而后者较弱;在冷海区二者的量级相当,年变化幅度也相当。海表风场和云的变化对海洋对大气加热场年变化的影响非常重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号